frma ONSITE TREATMENT

Amphidrome®

- System Description
- Installation
- Locations
- Performance
- Questions

Amphidrome[®]

• Definition in Oceanography

-The position in the ocean where the tide vanishes to zero

Amphidrome[®]

- Definition in Wastewater
 - A submerged attached-growth bioreactor (SAGB) in which the nitrogen vanishes to *nearly* zero

Amphidrome[®] Process Description

- Biological Nutrient Removal (BNR) Process
 - TSS
 - $-BOD_5$
 - Total Nitrogen
 - Oil and Grease
- One Reactor
 - A submerged attached growth bioreactor (SAGB) operating in sequencing batch mode
 - SAGB is also commonly referred to as a BAF (biological aerated filter).

System Consists Of 2 Tanks And 1 Reactor

• Anoxic / Equalization Tank

• Amphidrometm Reactor

Clear Well Tank

Treated Water

Waste Water

frm@

Anoxic/Equalization Tank

- Solids settling
- Sludge storage
- Secondary functions
 - Buffers the dissolved oxygen in the recycled flow
 - Mixes recycle with influent organic carbon to promote de-nitrification

Main Reactor Function

- Media provides the surface area for biofilm growth
- Provides solids separation, eliminating the need for downstream clarification
- Intermittent aeration
 Typically 3 minutes on 15 minutes off

Clearwell Function

- Stores batch volume
- Stores some fraction of backwash volume
- Contains backwash and effluent pumps (or PlusTM feed pumps)

Control Panel

- Touch Screen
- Remote Access
- Operator Can 'tune' the system

Amphidrome[®] System Benefits

- Highest Level of Nitrogen Removal of any system available
- Low Visual Impact
- Not affected by air temperature as are trickling filters
- All effluent filtered through deep sand bed to protect SAS

Installation

Three-tank system

NANTUCKET, MASSACUSETTS SINGLE FAMILY HOME

REACTOR COVERS

MEADOWS AT MAINSTONE

BELOW GRADE SYSTEM

OCEAN EDGE CONFERENCE CENTER

REACTOR COVERS

OCEAN EDGE CONFERENCE CENTER

BELOW GRADE SYSTEM

1

HEALTH CARE FACILITY

KOHLER

REACTOR COVERS

Where can you find us?

• New England

trme

- Pennsylvania
- North Carolina
- Maryland
- Minnesota
- Internationally

Performance

- Plant: Pleasant Bay Nursing Home
- Location: Brewster, MA
- Design Flow: 26,500 gpd

T	-	4
D	a	te
_	_	

	BOD ₅	TSS	Total N
Permit Limit	30 mg/L	30 mg/L	10 mg/L
Average	5.07 mg/L	6.3 mg/L	4.79 mg/L

Performance

- Plant:
- Location:
- Design Flow: 25,000 gpd

Madison, CT

Daniel Hand High School

Date

	BIOCHEMICAL OXYGEN DEMAND	TOTAL SUSPENDED SOLIDS	TOTAL NITROGEN		
INFLUENT	174 mg./L.	137 mg./L.	90 mg./L.		
EFFLUENT	9.5 mg./L.	8.2 mg./L.	6.8 mg./L.		
PERMIT LIMIT	30 mg./L.	30 mg./L.	10 mg./L.		

Performance

- Plant:
- Location:
- Design Flow:

Chili's Resturant Hingham, MA 7,670 gpd

Performance

- Plant:
- Location:
- Design Flow:

Traditions Condos Wayland, MA 10,320 gpd

Traditions (Condominium) DEP Permit # 0-638

	BIOCHEMICAL	TOTAL SUSPENDED	TOTAL
	OXYGEN DEMAND	SOLIDS	NITROGEN
PERMIT LIMIT	30 mg./L.	30 mg./L.	19 mg./L.
EFFLUENT	10.22 mg./L.	15.34 mg./L.	7.04 mg./L.

NA See

Process Chemistry

- Biochemical Transformations
 - $CH_2O + 0.309 O_2 + 0.085 NH_4^+ + 0.289 HCO_3^- \Rightarrow 0.535 C_5H_7O_2N + 0.633 CO_2 + 0.515 H_2O$ (aerobic)
 - $NH_4^{+} + 3.30 O_2 + 6.708 HCO_3^{-} \Rightarrow 0.129 C_5H_7O_2N + 3.373 NO_3^{-} + 1.041 H_2O + 6.463 H_2CO_3$ (aerobic)
 - $\text{ NO}_3^- + 0.324 \text{ C}_{10} \text{H}_{19} \text{O}_3 \text{N} \Rightarrow 0.226 \text{ N}_2 + 0.710 \text{ CO}_2 +$
 - $-0.087 \text{ H}_2\text{O} + 0.027 \text{ NH}_3 + 0.274 \text{ OH}^-$ (anoxic)

BNR - Process Chemistry

• Oxidation of Carbonaceous BOD:

Oxidation:

 $COH + O_2 + Bacteria \Rightarrow CO_2 + other end products + energy organic matter$

Cell Synthesis:
COHNS $+ O_2 +$ Bacteria + energy \Rightarrow $C_5H_7NO_2$
organic matterorganic matter

Endogenous Respiration

 $C_5H_7NO_2 + 5O_2 \implies 5CO_2 + NH_3 + 2H_2O + energy$

Process Chemistry

Oxidation of Nitrogen Based Compounds

 $NH_4^+ + 3/2 O_2 \implies NO_2^- + 2H^+ + H_2O$ Nitrosomonas Bacteria ammonium nitrite

 $NO_2^- + 1/2 O_2 \implies NO_3^$ nitrite nitrate Nitrobacter

```
Overall Energy Reaction:

NH_{4}^{+} + 2O_{2} \implies NO_{3}^{-} + 2H^{+} + H_{2}O

ammonium nitrate
```


Process Chemistry - Continued

•Reduction of Nitrite & Nitrate:

The nitrate reducing bacteria are facultative anaerobic heterotophs. Therefore, an organic carbon source is required. For the following equations methanol has been used as the carbon source.

First Energy Reaction: $6 \text{ NO}_3^- + 2 \text{ CH}_3\text{OH} \Rightarrow 6 \text{ NO}_2^- + 2 \text{ CO}_2^- + 4 \text{ H}_2\text{O}^$ nitrate methanol nitrite

Second Energy Reaction: $6 \text{ NO}_2^- + 3 \text{ CH}_3\text{OH} \Rightarrow 3 \text{ N}_2^- + 3 \text{ CO}_2^- + 3 \text{ H}_2\text{O}^- + 6 \text{ OH}^$ nitrite methanol nitrogen gas

Process Chemistry - Continued

Heterotrophic Cell Synthesis:

 $3 \text{ NO}_3^- + 14 \text{ CH}_3\text{OH} + \text{CO}_2^- + 3 \text{ H}^+ \Rightarrow 3 \text{ C}_5\text{H}_7\text{O}_2\text{N} + \text{H}_2\text{O}$ nitrate methanol Biomass

Overall Nitrate Removal

 $\begin{array}{rll} \mathrm{NO}_3^- + \ 1.08\ \mathrm{CH}_3\mathrm{OH} + \ 3\ \mathrm{H}^+ \Rightarrow 0.065\ \mathrm{C}_5\mathrm{H}_7\mathrm{O}_2\mathrm{N} &+ \ 0.47\ \mathrm{N}_2 + \ 0.76\ \mathrm{CO}_2 + \ \mathrm{H}_2\mathrm{O} \\ \mathrm{nitrate} & \mathrm{methanol} & \mathrm{Biomass} \end{array}$