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EXECUTIVE SUMMARY:       

This study was undertaken to assess the potential impact of residential development in the 

watersheds of the three ponds.  The components of the study that were used to make this 

determination include: the amount of residential development expected in each 

watershed, the volume of each pond, its tidal circulation and the desired water quality 

goal.  In the course of developing the basis for an impact assessment, a large amount of 

new or never before assembled information about these three coastal salt ponds and their 

watersheds was established.  Following is a summary of the specific findings about the 

hydrology of the ponds, the nature of their watersheds today and projections of the 

probable ultimate buildout and its impact. 

 

Pond and Watershed Parameters: 

 Size of the ponds: 

  Chilmark Pond at Low Water  178 acres    7.754 million square feet 

  Chilmark Pond at High Water 241 acres     10.498 “  “ 

  Menemsha Pond System  790 acres     34.412  “  “ 

  Squibnocket Pond   603 acres     26.267  “  “ 

 Volume of the Systems: 

  Chilmark Pond      35.94 million cubic feet 268.85 million gallons 

  Squibnocket Pond  175 million cubic feet 1.31 billion gallons 

  Menemsha Pond     179 million cubic feet 1.34 billion gallons (mid tide) 

 Tide Range & Tidal Volume (on a daily basis): 

  Chilmark Pond 0 to 0.45 feet 0 to 3.63 million cubic feet 

  Squibnocket Pond 0 to 0.47 feet 0.22 to 12.35 million cubic feet 

  Menemsha Pond 2.9 to 3 feet 166 million cubic feet 

 Watershed Size: 

  Chilmark Pond  Upper (western)     2122 acres 

  Chilmark Pond Lower (eastern)       1051 acres 

  Squibnocket Pond     1303 acres 

  Menemsha Pond   1856 acres 

 Daily Fresh Water Input (average): 

  Chilmark Pond       0.875 million cubic feet  

  Squibnocket Pond   0.493  million cubic feet 

  Menemsha Pond 0.647 million cubic feet (year long average) 

 Estimated Time for 95 % Flushing of Pond Water to the Sea: 

  Chilmark Pond       25 days 14.9 days when open to the ocean 

  Squibnocket Pond   354 days 43 days when tidal 

  Menemsha Pond 3.2 days 

 

 Nitrogen Loading Limit and Projected High and Low Loading at Buildout: 

  Pond  Load Limit kg/yr. High Load  Low Load  

Chilmark Pond 3802   6551   5015 

Squibnocket Pond 3037   4059   2295 

Menemsha Pond 31618   10608*  6700* 

*   Note this figure includes the load from Squibnocket 
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 Projected Watershed Buildout as Number of Dwelling Units: 

Pond     Now     High Growth Scenario Low Growth Scenario 

Chilmark Pond       437  1098 (200)*   859 (100) 

Squibnocket Pond   101    433 (83)   302 (47) 

Menemsha Pond 374    767 (125)   615 (75) 

* Note: Numbers in parentheses indicate number of guest dwellings included in 

the buildout number 

 

Water Resource Uses: 

Menemsha Pond is an important shellfish resource to the Towns of Aquinnah and 

Chilmark.  Herring, returning to spawn in Squibnocket Pond, pass through it in the 

spring.  The Wampanoag Tribe has a new shellfish aquaculture program based in the 

Pond.  There is a mooring field in the Pond used by recreational boaters.  Menemsha 

Basin is an active commercial and recreational fishing port as well as a destination port 

for recreational boaters.  The Pond is also an aesthetic and wildlife resource. 

 

Squibnocket Pond is a spawning site for a large herring population and a wildlife and 

aesthetic resource.  The Wampanoag Tribe manages a commercial herring fishery at the 

inlet to Squibnocket Pond.  The Tribe hopes to open an oyster fishery in the Pond in the 

future.  Before the system can be open to oyster harvest, the Division of Marine Fisheries 

must acquire enough samples for bacterial analyses to determine the health risks are 

minimal. 

 

Chilmark Pond is an important wildlife habitat and aesthetic resource.  Two small beds of 

oysters were found along the barrier beach indicating there is some potential for oyster 

restoration.  Before the system can be open to oyster harvest, the Division of Marine 

Fisheries must acquire enough samples for bacterial analyses to determine the health risks 

are minimal.  It is used by riparian owners for small boat access for recreation and as a 

means to access the South shore.  The Martha’s Vineyard Land Bank owns an access to 

the Pond where small boats may be launched to cross to a South shore swimming beach. 

 

Recommended Short Term Pond Management Program: 

Menemsha Pond appears to be a strongly flushed water body with the capacity to 

withstand the projected nitrogen loading.  The most intensive land use area, Menemsha 

Basin, is a seasonal use situated near the inlet to the pond where nutrient loading is either 

removed with the ebb tide or diluted with the strong influx of Vineyard Sound water on 

the flood tide.  Management activities in the form of shellfish enhancement programs 

aimed at increasing the economic benefits to the shellfish industry will also positively 

impact water quality by removing nitrogen and other nutrients from the system.  

Similarly, dredging done to maintain recreational and commercial boating access and 

safety will also maintain a strong tidal flow which flushes nutrients from the system.  As 

we are only just beginning (through the Wampanoag Tribe of Gay Head -Aquinnah 

(referred to as the Tribe) water resource studies) to get a good understanding of the water 

quality of the pond, it still makes sense to continue with the low density development 

pattern provided by current zoning.  However, the new nitrogen removing on lot sewage 
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systems allow flexibility as to lot size.  Nitrogen removal from wastewater is best focused 

in areas of higher density in order to take advantage of economies of scale. 

Additional Information Needs/Recommended Actions: 

 Eelgrass survey and health assessment 

 Deep water, overnight dissolved oxygen/water column stratification 

 Data on Menemsha Pond level compared to Squibnocket and 

interchange between the two ponds 

 Correct stormwater discharge into the Herring Creek on State Road 

 Evaluate runoff from State Road at Hariph’s Bridge 

 Encourage use of nitrogen removing sewage technology. 

 Enhance shellfish productivity as a means to remove nutrients 

 Dredge the channel as needed for boating activity. 

Squibnocket Pond is a more complex system as indicated by the changing tidal pattern 

discussed in this report and by the substantial fresh water component of the water column.  

Squibnocket today shows some poor water quality symptoms which must be attributed 

primarily to natural eutrophication as the current development pattern is minimal.  We 

can only predict that these symptoms will worsen as the watershed builds out and 

groundwater brings more nutrients into the pond.  Some further study is in order to 

determine whether the large phytoplankton blooms result in low oxygen levels in the 

deeper portions of the pond overnight.  In addition, the nature and persistence of  

stratification of salt water in the pond bottom should be studied in detail.  Stratified 

systems can result in low quality bottom water which can adversely affect shellfish 

confined to those waters and the rest of the water column when winds cause the system to 

mix. The Town of Aquinnah should look closely at adopting a Squibnocket Pond District 

similar to that on the Chilmark side as a means to provide guidance or regulation 

regarding residential nitrogen loading from lawns and septic systems.   

 

The simplest approach to meeting nitrogen loading limits may be to adjust zoning in this 

District to require a loading limit of 2.33 kilograms per acre on average over the 

watershed (the loading limit divided by the acreage in the watershed).  However, when 

the existing fixed sources such as acid rain are taken into account, the average loading 

allowed from residential uses falls to about 0.9 kilograms per acre.  We estimate that  a 

year round dwelling produces about 5.3 kilos of nitrogen per year from septic leachate 

and 1.5 from the lawn for a total of 6.8 kilos. However, when the seasonal dwellings are 

brought into consideration, the average nitrogen loading per dwelling is 3.45 kilos from 

septic leachate and 1.5 from lawns or 5 kilos per dwelling.  On average at build out, 

across existing and future dwellings, lot sizes should average 5.4 acres.  An alternative 

might be to require that advanced denitrifying septic systems reduce nitrogen loading on 

any lots less than 5.4 acres in size. 

 

Other short term suggestions include a study of the herring population in the pond to 

determine if there are steps that can be taken to enhance the size of the run.  Similarly, the 

oyster production from the pond should be managed to produce large quantities of 

vigorous young oysters which utilize nitrogen.  The oysters can then be exported to 

Menemsha Pond to prepare them for market.  
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The connection between Squibnocket and Menemsha pond is the weak link regarding the 

flushing of the pond.  The Herring Creek should be surveyed to determine if there are any 

environmentally safe steps that can be taken to increase the exchange of water and 

increase the rate of flushing.  Any increase in salt water into the system will have 

ecological and circulation effects which should be evaluated before taking steps to 

increase the flow through the Herring Creek.  On the plus side, this could be a cost 

effective means to loosen the growth restrictions discussed in the previous paragraphs. 

 

Information Needs/Recommended Actions: 

 Correct stormwater runoff into Herring Creek at State Road 

 Collect data on pond stratification and dissolved oxygen cycling during late 

summer 

 Continue periodic water chemistry and phytoplankton sampling 

 Collect longer term tidal cycle data as a means to refine flushing time and 

adjusting nitrogen loading limits 

 Survey herring and other fin fish populations in the system 

 Survey benthic organisms and aquatic plant distribution 

 Survey the Herring Creek to determine if tidal flow can be increased 

 Evaluate the possible impacts of increasing tidal flow through the Creek. 

 Implement oyster production program. 

 With this information in hand, consider adjusting development density 

through DCPC or zoning changes or reduce nitrogen loading as needed by 

requiring advanced nitrogen removing on lot sewage disposal systems 

 Work toward average future lot size of 5.4 acres through open space within a 

subdivision and through an active open space acquisition program. 

 Encourage the use of nitrogen removing on lot sewage treatment for small lots 

(5.4 acres or less).  Focus on systems that take advantage of natural processes 

to reduce nitrogen loading. 

 Encourage small managed turf areas and use of slow release nitrogen 

fertilizers at minimal application rates.  Use native grasses to maximize open 

vistas.  

 Begin a database on nitrogen content of local rainfall. 

 

Chilmark Pond is somewhat more complex than Squibnocket in that it alternates 

between cycles when it fills with ground and stream discharges and becomes more fresh 

and times when it is drained down and becomes saltier.  The duration of the opening to 

the ocean determines how much exchange occurs while the pond is open.  About 15 days 

are needed for a 95 percent exchange.  The length of time that the pond is open depends 

on the weather, being shortened by southerly winds particularly under stormy conditions 

that generate waves that fill the channel with sand closing the pond.  This is not a 

predictable phenomenon and so we cannot predict a reliable flushing period for each 

opening. An alternative way to estimate the time required to flush the system is to utilize 

the time required for the streams and groundwater to discharge a volume of water equal to 

the pond volume.  While not completely satisfying as far as removing nitrogen from the 

water column, this 25 day period seems to be a reasonable basis for devising a nitrogen 
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loading limit.  That said, the Buzzard’s Bay formula for determining the loading limit is 

best used for fully tidal ponds like Menemsha.  The limit we have derived is not a perfect 

fit for this system. 

  

Some consideration should be given to what is the desired use for this pond.  The Pond is 

currently rated as an SA resource.  However, the future nitrogen loading will exceed the 

recommended limit for this rating.  For recreational boating and wildlife only, the SB 

water quality rating is probably appropriate.  This rating may also be suitable if the Town 

would like to promote the establishment of shellfish, probably oysters, as a means to 

somewhat improve water quality and provide some economic benefit.  However, even 

with the nitrogen limit based on a lower quality SB goal, the ultimate loading at buildout 

from the watershed will probably exceed it.  Because it is limited by the available 

nitrogen, the added loading at buildout will probably cause some increased rooted 

vegetation in the western portion of the Upper Pond and, in the eastern end more frequent 

and intense phytoplankton blooms.  It appears that the water quality of the Lower pond is 

partially determined by the input of nutrients and biomass in the form of fresh water 

phytoplankton mainly from the Upper Pond.  The Lower pond would probably also 

experience more frequent and intense algae blooms and possibly increased macroalgae 

(sea lettuce or Ulva, Enteromorpha etc.).   

 

Eelgrass is not presently found in the Lower pond and may well not have been present for 

at least the past 60 years as recalled by pond users (Wakeman, 2000).  Other rooted 

macrophytes are infrequent in the Lower pond resulting in less cover and nursery grounds 

for fish that might either be found in the pond or potentially be stocked.  A resident 

recalls a substantial fishery for herring and perch in the early part of this century with the 

product exported to off Island markets (Cottle, 2000).  A survey of the fish population in 

these ponds should be a priority to determine what are the components of the system for 

which we need to plan.  A similar study was completed in Edgartown Great Pond and is 

planned for Tisbury Great Pond.  Continuation to Chilmark Pond is a natural next step. 

 

The Lower Pond needs longer lasting, mid-summer openings to the ocean.  An 

examination of the possibility to improve the circulation of the pond by cutting out some 

of Long Point to widen the channel along the beach at low pond should be carried out.  It 

is unlikely that this would prolong the lifetime of an opening to the ocean but it should 

increase internal circulation patterns and, depending on the amount of dredging done, 

increase the volume of the basin itself which will increase flow. 

 

Coastal Great Pond systems are not simple and need study over a number of years for a 

complete understanding of their nutrient loading limits.  The results of this study do not  

lead to an obvious conclusion regarding the ultimate use of the watershed.  They do send 

up some warning flags that the Lower Pond will exceed its nitrogen loading limit unless 

proactive steps are taken to reduce the final buildout loading.  These steps can be taken 

through conservation easements or fee title purchase to reduce land available for 

development.  They can also take the form of requirements for use of nitrogen removing 

septic systems to lower the loading to acceptable per acre limits.  The calculations are 
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similar to those explained for Squibnocket Pond.  The suggested limit for Chilmark 

Lower Pond is also about 0.9 kilograms per acre.  The average nitrogen load from sewage 

and lawn is about 5 kilograms per dwelling (average of both year round and seasonal) 

which implies the need for an average lot size of 5.4 acres.  This is within the range of 

some recent subdivision proposals when open space is included.  Where a denitrification 

sewage treatment system is used, the lot size could be reduced to 4.1 acres. 

Information Needs/Recommended Actions: 

 Survey fish populations and assess timing of openings to enhance herring 

 Investigate feasibility and desirability of oyster production 

 Evaluate pond circulation and options to enhance water quality through better 

circulation/flushing including dredging shoals and the role Doctor’s Creek 

plays in carrying nutrients into the Lower Pond. 

 Develop a good record system for timing and duration of pond openings.  

Attempt a trial run program to maintain the inlet for 15 days over a period of 

several months by repeat excavation of the inlet. 

 Encourage small managed lawn areas with remainder grown as native grasses 

with no fertilizer applications.  Encourage use of slow releases fertilizers. 

 Identify and acquire conservation lands in the watershed 

 Encourage the use of nitrogen removing on lot sewage treatment. 

 Continue the low density growth pattern as per zoning and by Planning Board 

subdivision review.  Work toward an average lot size of 5.4 acres for future 

subdivisions through open space in the subdivision as well as an active 

acquisition program. 

 Identify and correct any remaining direct stormwater discharges to streams in 

the watershed 

 Begin a database on the nitrogen content of local rainfall. 

 

Phosphorus Loading to All Ponds: 

As phosphorus is not typically a limiting nutrient to coastal pond systems, it is not 

addressed to the same level as nitrogen in this document.  The discussion is included as 

Appendix B.  An evaluation of phosphorus sources within the watersheds indicates that, 

on an annual basis, phosphorus additions to the ponds from watershed sources is a small 

part of the annual budget.  This is particularly true for steady rate sources such as septic 

system leachate.  Episodic, event type additions such as runoff from streets and pastures 

may be significant on a short term basis and are very difficult to predict or quantify.  

Recommendations for phosphorus reduction focus on runoff diversion into vegetated 

buffer strips and set backs of sewage disposal systems to allow soil retention of 

phosphorus to renovate wastewater. 
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Introduction and Summary: 

This study was undertaken to assess the likely impact of residential development in the 

watersheds of the three ponds.  The data available for Squibnocket Pond indicated that, at 

times, the Pond experienced low water quality.  Squibnocket Pond was also identified as 

being a concern due to nutrient loading by the Office of Watershed Management, DEP in 

1995.  Chilmark Pond was identified under section 303d of the Clean Water Act as an 

impaired pond due to bacterial contamination.  Menemsha Pond was identified by the 

Basin Team as a key area to concentrate resources.  Under the Watershed Initiative, a 

determination of acceptable levels of nutrient loading to coastal ponds was seen as an 

important next step. 

 

This document has been assembled with the best available information.  In developing the 

recommendations I have adhered to the Precautionary Principle which was presented by 

the Newsletter of the Science and Environmental Health Network in March, 1998.  The 

basis for this statement was compelling evidence that damage to humans and the 

worldwide environment was of such magnitude and seriousness that new principles for 

conducting human activities are now necessary.  Waiting for scientific proof of a cause 

and effect relationship often results in taking action after problems have developed.  The 

Principle states: 

 

When an activity raises threats of harm to the environment or human health, 

precautionary measures should be taken even if some cause and effect relationships 

are not fully established scientifically. 

 

Study Goals and Objectives:  This study has been conducted to assemble the data 

necessary to determine the tolerance of these ponds for nutrient loading.  We have 

determined as closely as possible what area contributes ground water to the ponds. High 

and Low build out scenarios for the watersheds are described both of which we believe 

have a real possibility of occurring.  The nitrogen loading to the pond systems are 

calculated for each scenario.  Nitrogen loading limits are detailed.  Options available to 

the Towns to limit the projected nitrogen loading are described.  A series of 

recommendations have been developed to provide guidance to the Towns. 

 

Previous Work in the Ponds: 

In 1978, the Wampanoag Tribe studied the Menemsha and Squibnocket systems 

collecting data on water chemistry, chlorophyll a and circulation in Menemsha Pond as 

part of a shellfish aquaculture project (Walsh 1979).  The bathymetry of Squibnocket 

Pond was also mapped.  This study was a baseline data collection project.  The data 

indicated that Menemsha and Squibnocket had low levels of phytoplankton (chlorophyll a 

0.1 to 3 micrograms per liter (parts per billion) and dissolved oxygen at or near saturation. 

 

In 1990, Arthur Gaines of the Woods Hole Oceanographic Institute performed an initial 

study of the Squibnocket Pond system including estimates of groundwater input, tidal 

exchange and nutrient levels in the system.  This study was undertaken to provide 

technical information toward the management of the pond.  The data collected indicated 
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low levels of dissolved inorganic nitrogen and abundant dissolved oxygen.  Nitrogen 

loading was estimated from groundwater and stream data.  In October 1990,  the 

Squibnocket Pond Critical District regulations were adopted into the Chilmark zoning 

bylaws.  These regulations added lot size requirements for a guest house and adjusted 

setbacks of septic systems from the pond. 

 

In 1995, the Wampanoag Tribe funded a water quality survey of 10 stations in Menemsha 

Pond and 4 in Squibnocket to determine the nutrient status, water column physical 

oceanography and phytoplankton and chlorophyll a content (Wilcox, 1999).  Menemsha 

Pond was found to contain low levels of nutrients, chlorophyll a and phytoplankton.  

Water column transparency was good throughout the growing season.  Squibnocket was 

found to have high levels of total dissolved nitrogen and, at times, chlorophyll a.  Water 

column transparency was low at times.  

 

Primer on Coastal Pond Eutrophication: 
NOTE: Technical terms used throughout this document are defined in the Glossary 

included as Appendix C.   Eutrophication carries a wide range of meaning.  It is 

generally associated with an increase in productivity (the cycling of carbon into living 

matter) and high concentrations of nutrients (Wetzel, 1983).  The term was devised to 

indicate the extreme end of a range of conditions in lakes from clear and unproductive on 

one extreme to overly productive on the eutrophic end.  The eutrophic state is 

characterized by a number of conditions that are undesirable from the human use 

perspective.  These include excess phytoplankton, sometimes abundant aquatic plants, 

low oxygen levels in the water sometimes to the point of causing a die off of animals, a 

reduction in the number of species living in the system with a shift from filter feeders 

(scallops and clams) to detritus feeders like snails and, under extreme conditions, 

burrowing worms.  The eutrophic state can develop under natural conditions where 

nutrients released from the surrounding uplands enter the pond and stimulate the 

productivity in the system.  However, the process is hastened by man made nutrients 

which are released in concentrations far in excess of the natural process.  These nutrients 

are released from development in the watershed by runoff of stormwater, erosion of soil 

from farmland, disposal of sewage by septic systems or by treatment facilities and by 

fertilizers applied to farmland and landscaping.  The nutrients are also added from outside 

the watershed by acid rain which is contaminated through the stack emissions of power 

plants, manufacturing processes and auto exhaust. 

 

One nutrient that all of these activities release and which is necessary for plant growth, is 

nitrogen.  The other major nutrients required for growth of phytoplankton and algae 

include phosphorus, carbon, hydrogen and oxygen.  Generally, the last three are 

sufficiently available in coastal waters so that they do not hinder growth of these aquatic 

plants.  In phytoplankton, nitrogen and phosphorus are required in the approximate ratio 

of 16 to 1.  While other less important nutrients may also affect growth rates, these two 

are of primary importance and, by their availability alone, usually determine the amount 

of growth of biomass in the system.  In ocean waters, it is generally agreed that nitrogen 

is the deficient nutrient and phosphorus is usually present in sufficient quantities for 
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growth of phytoplankton (Valiela, 1995).  For this reason, marine waters are often spoken 

as being nitrogen limited.  This means if nitrogen is added to the water, phytoplankton 

can reproduce to take advantage of the supply and the amount of organisms in the water 

column can increase until once again limited by availability of nitrogen or another 

necessary nutrient.  

 

While nitrogen from the sources mentioned is a soluble nutrient that moves readily 

through the environment, phosphorus is strongly bonded to soil particles and does not 

travel far as a dissolved nutrient.  Potential phosphorus sources include direct runoff from 

pastures and roads draining into the ponds when there is inadequate filtration by heavily 

vegetated borders. The flood tide may carry in phosphorus although data in Vineyard 

Sound (Wilcox, 1999) indicate orthophosphate is at low concentrations (about 0.5 

micromoles per liter).  In addition, during times where the lower part of the water column 

in a pond becomes anaerobic or when wind mixing suspends sediment, phosphorus may 

be released from the sediment where it is stored in large amounts (Wetzel, 1983).    

 

Nitrogen and Its Potential Impact:  Nitrogen is an important component of all living 

organisms.  It comprises about 78 percent of our atmosphere but is not very soluble as a 

gas in water.  It is converted to a soluble form by three main sources.  Lightning can 

oxidize nitrogen to form water soluble nitrogen by products.  Nitrogen fixing organisms 

such as blue green algae can convert atmospheric nitrogen gas into compounds usable in 

their systems.  Soluble nitrogen is also created and released by living animals particularly 

man.  Once soluble, nitrogen is most directly usable by phytoplankton and larger aquatic 

plants in the form of nitrate, nitrite or ammonium.  As they cannot create their own 

soluble nitrogen, these plants are therefore dependent on availability of these forms of 

nitrogen in order to grow.  Sources of these forms of nitrogen include septic system 

leachate, sewage effluent, acid rain, fertilizers and release from pond bottom deposits 

following bacterial breakdown of organic matter.  In the sandy soils present in the 

recharge area, most forms of nitrogen are oxidized to nitrate before they reach the ground 

water.  Nitrate is highly soluble in water and generally not reduced or eliminated by any 

substantial process once it is in the ground water.  For this reason, we can closely 

estimate the loading to the pond by making reasonable estimates of the quantity of nitrate 

from the land uses in the watershed reaching the ground water. 

 

While some increase in the phytoplankton population is not necessarily a problem, with 

enough nutrients the population can explode.  High populations of phytoplankton (often 

called an algae bloom) cloud the water reducing light transmission.  In large numbers, 

overnight oxygen uptake by these living organisms or the die off and decay of 

phytoplankton can reduce oxygen levels to the point where other organisms are stressed 

or killed. This may have occurred in Edgartown Great Pond in 1993, when the oyster 

population died out following a late summer bloom.   

 

Reduced light limits the vigor of eelgrass which requires sunlight as does any green plant.  

Eelgrass beds may have existed at one time in Chilmark Pond.  They have not been 

present in the 60 year memory of people familiar with the pond (Wakeman, personal 
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communication).   It is possible that beds were lost during the 1930’s wasting disease 

devastation throughout the northeast and never reestablished.  It is also possible that 

eelgrass never existed due to low salinity.  Eelgrass is common in Menemsha Pond but 

was not found in Squibnocket Pond.  Eelgrass is an important component of the 

ecosystem providing cover for bait fish, scallops, blue crabs and eels as well as food and a 

substrate for the growth of a myriad of aquatic plants and animals.  It also acts as a 

sediment stabilizer through its dense root system. 

 

Numerous studies of coastal ponds by researchers have concluded that nitrogen loading 

from shoreline development may have adverse impacts on these waters.  Waquoit Bay, 

Cape Cod, has been thoroughly studied over 30 years.   It is a coastal pond with a fixed 

inlet through a barrier beach.  As residential land use increased in the recharge area, the 

pond has steadily lost formerly extensive eelgrass beds.   The loss was attributed to 

nutrient loading from septic systems in the watershed (Kennish, 1996).  The damage to 

eelgrass beds in response to nutrient loading occurs in two ways as a result of the eelgrass 

plants requirement for light.   

 

While seagrasses like eelgrass are limited by the available light level, both phytoplankton 

and large macro-algae (wrack algae) are limited by the availability of nutrients rather than 

light (Valiela, 1995).  In other words, when nitrogen is added to the water column, it 

stimulates the growth of undesirable algae but does not increase the growth of eelgrass.   

In more marine waters, wrack algae include Ulva, Enteromorpha and Cladophora.  The 

differing growth limitations set up a situation where, as nutrients are added to the system, 

phytoplankton and wrack algae increase, reduce the light penetrating to the bottom and 

cause a decline of eelgrass which may eventually be replaced entirely by macro-algae.  

Nutrient stimulation of phytoplankton blooms reduces available light to the eelgrass beds 

at the bottom particularly where the water depth is 2 or more meters.  Nutrients also 

increase the growth of single cell and chain algae (e. g. diatoms) which grow on the 

surface of the eelgrass blades further blocking the sun light. Reduced light may stress the 

eelgrass making it more susceptible to wasting disease or may just reduce its vigor and 

lead to thinning of the eelgrass and eventual loss of entire beds.  The macro-algae also 

tend to break loose late in the season or after a storm and gather into large mats which 

may smother desirable, filter feeding shellfish such as clams, scallops and oysters, 

encourage detritus (debris) feeders such as snails and, in severe cases, cause anoxia (lack 

of dissolved oxygen), aquatic animal die off and odors. 

 

It seems clear that addition of nitrogen to our coastal ponds will lead to undesirable 

consequences if it exceeds a threshold known as the loading limit.  One goal of this report 

is to establish appropriate nitrogen loading limits for each pond so that the regulatory 

agencies may implement the necessary steps to prevent man made eutrophication of these 

ponds. Because Chilmark and Squibnocket Ponds are brackish ponds which appear to 

alternate between times of excess nitrogen and times of deficient nitrogen (Wilcox, 

1999), the right loading limit is not as clear cut a conclusion as it is for a salt pond such as 

Menemsha.   It seems certain that there are extended periods of time during the course of 

each year, particularly during the growing season, when all of these ponds are nitrogen 
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limited.  We should be very concerned at what the future loading of the recharge area may 

do to these ponds.  Once the recharge area is built out, it will take about 20 years for the 

system to reach equilibrium and for the full effect of the nitrogen loading to appear in the 

pond.  If the "effect" on the pond is undesirable, changes made in the recharge area to 

reduce nitrogen loading will take another 20 years to reach the pond and reverse the 

negative impacts.  For this reason we need to make every effort to anticipate possible 

impacts with a conservative limit on nitrogen loading within the recharge area. 

 

Water Column Parameters:  There are key chemical and physical measures that are 

measures of the condition of a water body under study.  When collected over time, these 

measures can tell us whether the system is eutrophic or moving toward eutrophication.  

Study over time is necessary because these measures vary from year to year in response to 

weather patterns.  The measures are described in more detail in Task 2.  They include 

chlorophyll which is an indicator of the algae population in the water column.  Light 

penetration is affected by the amount of algae in the water column and is measured with a 

Secchi disk.  The amount of dissolved oxygen is a key necessity for the animals living in 

a pond.  It is affected by the algae population but also by the amount of organic matter 

that is decaying in the pond.  The amount of nitrogen in the water column in all forms 

indicates whether the system is over-productive and if the nitrogen input from the 

watershed is excessive.  There are many other investigations which indicate the condition 

of a pond including population studies of the bottom dwellers,  distribution and amount 

of aquatic plants, fish population make up and long term productivity in the system to 

name a few.  These are more complex and costly studies which were beyond the scope of 

this study. 

 

Geology: The watershed for the Upper (western) and Lower (eastern) Chilmark 

Great Ponds includes two distinct deposits of glacial origin (Kaye, 1964).  The geology in 

the hilly portions of these watersheds is complex  as a result of the glacier pushing up 

thick wedges of frozen ground comprised of  coastal plain sands and clays (much like 

what can be seen in the Gay Head Cliffs) as the underpinnings for the watershed.  These 

formations (called imbricated thrust sheets) make up much of the western moraine (Qgh, 

Kaye 1972) including most of the Squibnocket, Chilmark Upper and Menemsha Pond 

watersheds.  These materials range from clay through sand and gravel.   The thrust sheets 

dip steeply to the northwest creating isolated pockets of groundwater that may or may not 

directly connect to the Ponds.  The less pervious materials also form the basis for 

sufficient runoff generation to support Mill Brook, an unnamed stream flowing through 

the Allen Farm and Fulling Mill Brook all of which flow out of the moraine into Upper 

Chilmark Pond.  In addition Black Brook and Witch Brook flow into Squibnocket Pond 

from a large wetland dominated watershed.  An unnamed stream originating in a large 

wetland near Menemsha Crossroad discharges into Menemsha Pond near Peases Point.  

See Figure 1 for pond locations. 

 

The second formation is Mvo, an outwash deposit consisting of layered sand and gravel.  

While some of this formation occurs in the watershed of the Upper Chilmark Pond, it 

makes up a larger part of the Lower Chilmark Pond watershed.  Within this deposit, the 
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aquifer is closely linked to the Lower (eastern) Chilmark Pond.  The divide which 

separates groundwater flowing into Lower Chilmark Pond from water flowing into 

Tisbury Great Pond is subject to some movement due to the relative level of the two 

ponds.  The area of the contributing aquifer would expand for the Pond which is 

relatively lower.  Typically both ponds are opened (and lowered) to the ocean on a similar 

schedule however, Tisbury Great Pond sometimes remains connected to the ocean for 

months while the Chilmark Pond opening often closes more quickly.  The outwash 

deposit does not occur in the Squibnocket and Menemsha Pond watersheds. 

 

Chilmark Pond was probably formed by headward erosion by sapping of groundwater 

spring seepage fed from a large glacial meltwater lake situated in Nantucket Sound 

immediately after the Wisconsin ice had vacated the area (Uchupi & Oldale, 1994).  At 

that time, sea level was hundred’s of feet lower than it is today.  As a result of the sapping 

process, the pond is characterized by narrow, elongate coves (Wades and Gilbert’s) that 

extend into the outwash plain.  These coves terminate in dry valleys that extend further 

into the outwash plain and create unique habitat by virtue of their dry, sandy soils, 

exposure to salt spray and tendency toward frequent frosts.  Squibnocket and Menemsha 

are probably pre-glacial low areas that were not filled with glacial sediment (Kaye, 1964).  

All three ponds were filled by rising sea level following the end of the Wisconsin 

glaciation that reached the current level approximately 1000 years ago (Uchupi et al, 

1996).   

 

The Ponds studied range in size from Chilmark Pond at  241 acres at high pond before an 

inlet is cut (178 acres at low pond), to Squibnocket Pond at 603 acres and Menemsha 

Pond at 790 acres.   The nature of exchange with either Vineyard Sound or the Atlantic 

differs widely from the vigorous, daily tidal flushing of Menemsha to the periodic 

breaching of Chilmark Pond with short term tidal exchange in the lower (eastern) pond.  

Squibnocket Pond’s tidal exchange with Menemsha Pond has yet to be fully 

characterized.  Herring Creek is a long (1700 feet) shallow creek that joins Menemsha 

and Squibnocket Ponds.  It appears that Squibnocket sometimes has a diurnal tidal flux 

while, at other times, there may be more limited flow which produces a gradual, small 

rise and fall of the pond level over a period of up to 10 to 14 days.   

 

The watershed area of the ponds varies from approximately 3173 acres for Chilmark 

Pond, to 1856 acres for Menemsha and 1303 acres for Squibnocket.   Large ponds with 

small watersheds (Squibnocket and Menemsha) often have their nitrogen loading 

dominated by acid rain. 

 

A portion of each watershed is held in conservation by the Towns of Chilmark and 

Aquinnah, the Sheriff’s Meadow Foundation, the Land Bank and several subdivision 

associations.  The total land in conservation ranges from 161 acres in the Squibnocket 

watershed, to 211 acres in the Menemsha watershed and 285 acres in the Chilmark Pond 

watershed. 
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Land uses in the recharge area which release water soluble nutrients or other chemicals 

into the ground water will eventually have some effect on the pond when the ground- 

water discharges into the pond.  At a groundwater travel time of around one foot per day, 

the majority of the recharge areas are within less than 20 years of discharge to the ponds.  

However, the relationship between groundwater and stream flow as well as the geology of 

the watersheds confounds the potential to be accurate with this estimate.  Groundwater 

reaching a stream may complete its journey to one of these ponds in a matter of days or 

weeks whereas, groundwater pockets that are not part of a single aquifer moving toward 

discharge at the shore may be decades in transit. 

 

Groundwater and stream input is a significant contributor to the total water in both 

Chilmark and Squibnocket Ponds.  Chilmark Pond receives about 1 million cubic feet of 

groundwater and stream discharge every day on average.  Squibnocket receives about 0.5 

million cubic feet per day.  Because circulation of these ponds with the sea is sluggish, 

they are brackish and fresh water inputs are very important to their water and nutrient 

budgets.  Menemsha Pond which has vigorous tidal circulation, receives about 0.65 

million cubic feet of fresh water input each day but the tidal exchange is an 

overwhelming 166 million cubic feet per day. 

 

Present Day Management:  Chilmark Pond is breached to the Atlantic Ocean by 

excavating a trench through the barrier beach at intervals of about 4 months.  Typically 

the pond will reach heights of over one meter above mean sea level before it is breached.  

The breaching is done to maintain salinity in the pond as well as to limit flooding of 

septic systems and basements in houses bordering the pond.  The opening discharged 

around 18 million cubic feet of water during the June 1999 opening.  Prior to the opening 

the pond had freshened up so that salinity ranged from 12 to 14 parts per thousand (PPT).  

Following the opening, salinity ranged from around 20 to 22 PPT.  The salinity of 

seawater is about 35 PPT while that of fresh water approaches 0 PPT.  The regular, man 

made breaching of the system leads to a somewhat variable but always brackish Lower 

Chilmark Pond and a fresh Upper Pond.  If the system were not periodically opened to the 

ocean, the system would have much wider swings in salinity perhaps from nearly fresh to 

nearly ocean salinity (after a storm produced a breach through the barrier beach) which 

would probably cause catastrophic loss of fauna.   

 

Menemsha and Squibnocket receive far less manipulation on an annual basis.  The 

channel into Menemsha Pond is periodically dredged to allow safe access to recreational 

and commercial boating.  This also undoubtedly improves the circulation and flushing to 

Vineyard Sound.   

 

In addition to physical management by way of breaching the pond, the Shellfish 

Departments transfer scallops and quahogs into Menemsha Pond for spawning and 

harvest to support the shellfish industry.  The Wampanoag Tribe has just started a 

shellfish hatchery which will be used to stock Menemsha Pond.  Squibnocket is now 

being studied by the Tribe as a potential commercial source of oysters.  Chilmark Pond 

has no commercial shell fishery. The Chilmark Pond spring openings (April to May) are 
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optimal to allow a herring run but the size or even the presence of the run is not known.  

Osprey appeared to catch herring during the July 2000 sampling round.   

 

The duration of the opening to Chilmark Pond is crucial to the exchange of water in the 

pond with that in the ocean. We estimate that an opening of 15 days duration is necessary 

to exchange 95 percent of the water in the pond for water from the ocean.  The June 1999, 

opening only persisted for about 5 days.   As with Edgartown Great Pond, the lowered 

pond increases the discharge rate from the ground water bringing additional nitrogen into 

the system and actually initially lowering the salinity in the coves (Gaines, 1993).  Once 

the pond level has been lowered, it is important for the opening to persist long enough to 

remove enough nitrogen to the ocean so that pond impacts are minimized. 

 

Projected Nitrogen Loading: 

Projections are a means to determine the relative risk of undesirable eutrophic conditions.  

Nitrogen is the key nutrient to evaluate for these ponds.  Nitrogen is released from septic 

systems, lawn fertilization, farm fertilization, acid rain, the sewage treatment plant and 

the Chilmark and Aquinnah landfills.  Today there is an estimated discharge to the ponds 

as follows:  

  Chilmark Pond  3400 to 3800 kilograms/year* 

  Squibnocket Pond  1500 to 2700 kilograms/year 

  Menemsha Pond  3400 to 4900 kilograms/year 
 The Range is based on the high and low acid rain source which is a large part of present day loading. 

 

Projected nitrogen loading from future development in each watershed:  

 Chilmark Pond  4946  to 6551 kilograms (13.6 to 17.9/day) 

 Squibnocket  2295  to 4059 ―‖  (6.3 to 11.1/day) 

 Menemsha Pond  4409 to 6531 ―‖  (12.1 to 17.9/day) 

    

Menemsha Pond also receives the loading from Squibnocket Pond.  The net to Menemsha 

Pond ranges from 6704 to 10590 kilograms per year.  Each of these projections has been 

devised to provide a realistic possible range of outcomes.  

 

Nitrogen Loading Limit: 

The data collected indicate that nitrogen is the limiting nutrient in each pond system 

either continuously (Menemsha) or at times, usually during the growing season in 

Squibnocket and Chilmark Ponds (Tables 2 and 5).  A growing season nitrogen 

deficiency was found in Great Ponds similar to Chilmark Pond and in Squibnocket Pond 

from early May through September depending on the weather (Wilcox, 1999).  This data 

set is extensive for both Squibnocket and Menemsha Ponds but is limited for Chilmark 

Pond (Wilcox, 1999 and Tables 2 and 5 this document).  Based on data from other Great 

Ponds and the limited amount of data collected from Chilmark Pond over two growing 

seasons, it is highly likely that in Chilmark Pond during the winter or at high pond in 

spring, phosphorus becomes the nutrient that limits pond productivity (Wilcox, 1999).  

The difficulty is to draw the line between acceptable annual nitrogen loading and loading 

which is likely to stimulate more of the eutrophic indicators that are discussed above.  
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The focus should be on what happens during the summer when poor water quality can 

damage the ecosystem.  At this time, nitrogen is the limiting nutrient. 

 

The loading limit that makes sense for Menemsha Pond is 31618 kilograms per year 

which clearly exceeds the highest projected loading.  The indications are that, if the 

watershed builds out under current zoning, water quality in the system should continue to 

be excellent.   

 

Chilmark Pond already shows some symptoms of excess phytoplankton in the system at 

the present day loading.  The formula for estimating loading limits is not as well suited to 

Chilmark Pond with its wide ranging salinity levels resulting from the closed and open 

pond cycles.  The loading limit that seems most appropriate for this system is that 

identified for Lower Quality rated waters with a 25 day flushing time.  This limit is 3802 

kilograms per year.  This limit cannot be easily reached under the projected loading at 

buildout. 

 

Squibnocket Pond is somewhat less confusing than Chilmark Pond.  While brackish, it 

does receive some water exchange on a daily basis.  The suggested target for nitrogen 

loading from the watershed for this pond is that associated with Lower Quality waters 

with a 354 day flushing period or 3037 kilograms per year.  This estimate falls midway 

between the upper (4366 kilograms) and lower (2686 kilograms) projections.  This should 

be an attainable goal. 

 

Phosphorus Loading:  Phosphorus is also an important nutrient for the growth of 

phytoplankton and aquatic plants.  Addition of phosphorus to a water resource, 

particularly fresh water, can stimulate excess plant growth.  In coastal ponds, it is usually 

not the limiting nutrient.  In addition, the methodology for determining appropriate 

phosphorus loading limits has not been developed for marine waters.  For these reasons, 

phosphorus loading calculations are not emphasized here but are limited to Appendix B. 
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Task 2: Assess Water Quality: Chilmark Pond 
This Task was proposed to gather some baseline data on the water chemistry, chlorophyll 

a and water column oceanographic parameters such as salinity, conductivity, turbidity, 

pH and dissolved oxygen.  As there is existing data for Menemsha and Squibnocket 

(Wilcox, 1999), these ponds were not included.  A total of 5 sampling rounds at 10 

stations in the Upper and Lower Chilmark Ponds was planned.  Water samples were 

collected, handled and processed in an appropriate manner to assure high quality data as 

described in Task 1, Quality Assurance and Quality Control. 

 

Comparison of the Ponds Under Study with Other Local Ponds: 

Chilmark Pond is similar in form to the other south shore coastal ponds including Tisbury 

Great, Oyster and Edgartown Great Ponds.  All of these ponds have elongate coves 

extending in a northerly direction. The topographic depressions in which the ponds are 

found, probably formed by headward erosion as a result of groundwater seepage fed from 

a large glacial melt water lake situated in Nantucket Sound immediately after the 

Wisconsin ice had vacated the area (Uchupi & Oldale, 1994).   

 

In terms of their general physiographic features, the ponds in the present study are 

compared with ponds surveyed in a previous study (Wilcox, 1999) in Table 1.  In 

evaluating coastal ponds for their ability to tolerate nitrogen, the Buzzard’s Bay program 

used a mean depth of  2 meters as the break point between deep and shallow ponds. 

Table 1 Physical Characteristics of Ponds Studied 

POND SIZE (acres) Avg. Depth 

(meters) 

Circulation Recharge 

Area (km2) 

Flushing Time 

Edgartown 

Great 
1 

890 (high stage) 0.9 (low stage)   wind/breached 20.84 (5150 ac.) 14 days to 3 

months 

Oyster2 207 2 to 3 wind/breached ~4 (1000 ac.)  2 wks. to 4 

months 
Tisbury 

Great  
3
 

718 (high stage) 1.7 (low stage) wind/breached 43.87 (10840 ac.) 2.6 to 95 days 

Chilmark 

Pond  
4
 

241 (high stage) 0.5 (low stage) wind/breached 12.85 (3173 ac.) 15 days to 25 days 

Long Cove 
5 

83 ~1.5 wind 2.02 (500 ac.) fresh/ unknown 

Sengekontack

et Pond  
6 

620 0.92 MSL tidal 19.8 (4900 ac.) 1 day 

Lagoon 

Pond  
7
 

538 2.8 MSL tidal 15.66 (3868 ac.) 13.6 days 

Squibnocke

t Pond  
8
 

603 1.5  wind/tidal 5.28 (1303 ac.) 43 to 354 days 

Menemsh

a Pond  
9
 

790 1.5 MSL tidal 7.51 (1856 ac.) 3 days 

Sources: 1  Gaines ( 1993)   2  Wilcox (1999)      3  MVC/Taylor in preparation 

  4  MVC/Wilcox in preparation 5  Wilcox (1999)       6  Gaines (1995) 

  7  MVC/Taylor in preparation 8  MVC/Wilcox in prep. 9 MVC/Wilcox in prep. 
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Chilmark Pond Water Quality Survey: 

The sampling program conducted under the present study represents only the beginning 

steps in sorting out the nutrient cycling and condition in Chilmark Pond.  The coastal 

great ponds are complex and will only be understood fully from longer term data 

collection.  Water samples were collected from a total of 10 sampling stations in the two 

ponds (Figure 2).   Sample rounds were completed on May 25, June 21 and August 9, 

1999 and July 17 and August 14, 2000.   
 

Samples were collected from a depth of 8 to 12 inches below the surface.  Dissolved 

nutrient samples were immediately filtered through a 0.22 micron filter to remove 

particulates.  All samples were stored on ice in a cooler until delivered to the lab.  The 

quality assurance procedures followed are spelled out in Task 1.  The data from the lab is 

shown in Table 2. The water quality criteria cited in the following discussion apply to the 

growing season- April through October. 

 

Along with water sample collection, a multi-parameter meter was used to profile the 

water column for temperature, conductivity, pH, dissolved oxygen and turbidity (see 

Table 3).  A Secchi disk is used to determine the transparency of the water column.  

By profiling the water column from top to bottom, it is possible to identify stratification 

which can lead to water quality problems by isolating the deep water from contact with 

the air, the source of oxygen overnight.   No stratification was observed in the Lower 

Pond during the study period and may reflect the shallow pond and wind exposure.  At 

station 3 in the Upper Pond temperature stratification was found in June 1999.  

Stratification in the area south of station 4 toward station 5 was found regularly and 

probably occurs due to continuous input of cold water from the Fulling Mill Brook. 
 

The discussion which follows focuses on the Lower Chilmark Pond as it is a coastal salt 

pond which is the type of system for which nutrient loading limits have been most 

completely developed.  Sample stations in the Upper Pond (station 1 through 5) are in 

fresh water and are not described here.  Those data are discussed in the Summary section.  

Fresh water resources have another set of standards which are different from brackish and 

salt waters. 
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Conductivity: 

The conductivity of sea water is around 45 to 48 ms/cm (milli-Seimens per centimeter).  

The Lower Pond varies from about 20 percent sea water before an inlet is cut through the 

barrier beach to about 60 percent sea water after the inlet is in place.  The Upper Pond is a 

fresh water system that will only receive sea water during storms as wave overwash of the 

barrier beach, as salt spray and, under extreme tidal conditions, as flow up Doctor’s Creek 

from the Lower Pond.   

 

Figure 3 clearly demonstrates the differing salinity of the two systems and illustrates a 

fundamental difference between the two ponds.  In the Lower Pond, the conductivity 

varies between “closed pond” lower values and “open pond” higher values.  The Upper 

Pond is continuously fresh with conductivity near 0.   Most of the Lower Pond 

conductivity values range between 10 and 35 milli-Seimens per centimeter while the 

Upper Pond values mostly fall below 0.3 mS/cm.   

 

 
Chlorophyll a: 

This is an indirect measure of the total amount of phytoplankton in the water column.  

Chlorophyll bearing phytoplankton are at the base of the food chain.  However, as their 

numbers increase, the light penetration to the bottom declines and can make it difficult 

for the bottom plant community including eelgrass to get adequate light.  No eelgrass was 

found throughout the Lower Pond where it should have some chance of surviving 

considering that it is found in Edgartown Great that has similar conditions.  One symptom 

of nutrient loading to coastal salt ponds is the overall increase in phytoplankton and the 

frequency of excessive blooms.  Excess phytoplankton in the water column may cause 

oxygen problems overnight when they respire, removing oxygen and releasing carbon 

dioxide.  This can lead to hypoxia (low oxygen levels below 3 milligrams per liter) which 

can stress marine animals such as fin fish and shellfish. 
 

Oxygen in the water column is a fundamental characteristic of natural waters.   Oxygen 

content is in a dynamic state of equilibrium with consumptive uses like respiration and 

organic matter decay reducing the content and being balanced by diffusion into the pond 
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from the air and release by green plants raising the content.  Short term oxygen deficit (e. 

g. overnight consumption during an algae bloom) may lead to transient population 

changes in a water body.  However persistent low levels of dissolved oxygen (e.g. 

brought on by excess organic matter in decay at the bottom) are a symptom of a 

functional change in an estuary.  Where there are dense stands of macrophytes, decay of 

the plant material at the end of the season may be accompanied by prolonged periods of 

low oxygen that can lead to die off of fish and other animals.  This has been documented 

in Waquoit Bay and related to nitrogen loading from septic systems in the watershed 

(Valiela et al, 1992).  An excessive algae bloom in Edgartown Great Pond during the late 

summer of 1993, probably lead to a massive oyster die off when the algae died, settled to 

the bottom and began to decay robbing the lower water column of oxygen. 

 

As an indicator, the quantity of chlorophyll a in the water column has been used as a 

means of characterizing the water quality in coastal salt ponds by both NOAA (1996) and 

the Buzzard’s Bay Program (Costa & Howes, 1996).  According to the Buzzard’s Bay 

system, concentrations of 3 or less micrograms per liter (ug/l) are indicative of the highest 

quality.  Concentrations of 10 or more are typical in the lowest quality waters.  NOAA 

uses 0 to 5 ug/l as the best, 5 to 20 ug/l as moderate quality and over 20 ug/l as the worst 

quality.  Chlorophyll a is plotted in Figures 4. 
 

 
The biological activity in the system affects the amount of oxygen in the water column. 

The water column can only hold so much oxygen in solution at a given temperature.  This 

amount is 100 per cent saturation.  During the day the saturation may exceed 100 percent 

as aquatic plants release it in such volumes that it may actually bubble out of the water as 

a gas.  Overnight, when plants take up oxygen instead of releasing it, oxygen 

concentrations can drop and reach a point where bottom dwelling animals may be 
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stressed or even killed by the lack of oxygen.  The dissolved oxygen readings converted 

to percent saturation are plotted in Figure 5 for three stations over the five sampling 

periods.  The stations in the Lower Pond (6 through 10) were more likely to have lower 

oxygen saturation compared to those stations in the Upper Pond (1 through 5).  The deep 

measurements (open symbols) typically contain less oxygen than the upper levels.  While 

no results from this survey indicate the pond reached hypoxia, station 10 did reach less 

than 50 percent saturation in July 2000.  Additional, overnight data would be valuable. 

 

 
 

 

Secchi Depth: 

The depth to which a 1 foot diameter white disk can be seen in the water column is 

directly related to the amount of suspended material in the water column.  The suspended 

matter can be either phytoplankton or silt.  The depth to which the disk can be seen has 

been correlated to the depth to which light penetration is sufficient for the growth of 

phytoplankton and, by inference, the depth to which rooted plants such as eelgrass can 

thrive.  This correlation is 2.5 times the depth to which the disk is seen.  Generally, when 

the depth is 1 meter or less, the water column has an over abundance of phytoplankton 

and the water quality is considered to be poor and if the depth is over 3 meters the water 

quality is highest.  See Figure 6. 
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Total Dissolved Nitrogen (TDN): 

This is the sum of the dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen 

(DON).  The inorganic forms include nitrate, nitrite and ammonium.  They enter the 

system from acid rain, fertilizers, wastewater or are cycled out of bottom sediments.  

These nutrients are generally so thoroughly scavenged by phytoplankton that they are 

only found in minute amounts, typically below 10 micromoles per liter (um/l) which is 

about 0.14 parts per million or less.  Dissolved organic nitrogen includes waste products 

from organisms in the water column as well as decay products from formerly living 

phytoplankton, macrophytes, fin and shellfish.  In 1995 (Wilcox, 1999) the offshore 

sampling site located in Vineyard Sound averaged 22 um/l of TDN.  This average, 

Vineyard Sound concentration can be thought of as a base level to which groundwater, 

streamflow, rainfall and runoff are added in the coastal ponds.   

 

NOAA (1996) has set quality ratings for TDN as follows: 

 Best Quality  0 to 7.14 um/l 

 Moderate quality 7.14 to 71.4 um/l 

 Worst Quality Over 71.4 um/l 

 

The Buzzard’s Bay Program set standards for dissolved inorganic nitrogen (DIN), a 

component of TDN, that range from 1 um/l at the best quality end to 10 or more at the 

lowest quality rating.  DIN is a rare commodity in marine waters and is in great demand 

as nitrogen is an essential nutrient for the growth and reproduction of phytoplankton.  It is 

taken into the biomass in the pond so quickly that even very low concentrations indicate a 

large source of nitrate or ammonium.  DIN is more common in the freshwater system 

particularly groundwater where it is commonly 100 um/l or more.  DIN is plotted in 

Figure 7 for Stations in both Upper and Lower Ponds.  The input of DIN from the streams 
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(Stations 1 and 4) picked up in June, 1999 to between 5 and 10 uMoles per liter and 

continued through August.  The Lower Pond DIN concentrations exceeded 10 uMoles per 

liter throughout the pond by August, 1999.  The 2000 season had poor openings to the sea 

which did not persist.  DIN levels are much lower at the Lower Pond stations during July 

and August in 2000 compared to 1999. 

 

 
 

Total water column nitrogen is plotted in Figure 8 for Stations 4, 6 and 7 in the Pond.  

Station 4 is at the mouth of Fulling Mill Brook while station 7 is in the middle of the 

Lower Pond.  At Station 7 in August 1999, TDN approaches 60 uMoles per liter (0.9 

parts per million) exceeding the threshold to the lowest quality rating.  The spike in 

nitrogen content found in August probably resulted in part from the June opening to the 

ocean.  In addition, although June and July were drier than normal, a heavy rainfall 

occurred on August 8 that resulted in 1.5 inches of precipitation falling in 15 minutes.  

This rate of rainfall would generate a large volume of runoff into the ponds.  In 2000, this 

is repeated but the portion that is DIN is much lower.   
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Other Data from the Water Quality Survey of Chilmark Pond: 

Silicate concentrations found in the two ponds were similar to those found in the other 

great ponds surveyed in 1995 and 1996 (Edgartown Great, Oyster and Tisbury Great 

Ponds).   The concentrations, ranging from 40 to over 100 um/l in the Chilmark Ponds, 

are quite high when compared with better circulated salt ponds such as Menemsha, where 

silicate averaged under 10 um/l during the 1995-96 survey. This is a result of the strong 

influence of ground water and stream inputs to the system.  Somewhat surprisingly, the 

highest concentrations were found in the Lower Pond which has the smaller watershed 

and lacks substantial stream inputs.   There may be a mechanism trapping silicate in the 

Lower Pond as it fills with water from the Upper Pond. 

 

The ratio of DIN to orthophosphate has some implications to the growth of 

phytoplankton.  Redfield (1963) found that the ratio averages around 16 to 1 for 

phytoplankton.  This implies that when the ratio is substantially less than 16, nitrogen is 

deficient and is limiting the growth of phytoplankton.  Conversely when the ratio is over 

16, phosphorus is deficient and limits growth.  Throughout the sampling period, the ratios 

averaged less than 16 in the Upper (western) Pond implying that nitrogen limits further 

growth of fresh water phytoplankton (see Table 2).  This is not usually the case for fresh 

water systems. 

 

In the Lower Pond the situation is more complex.  During the May and June 1999, 

sampling rounds, the ratio was generally below 16:1 throughout both ponds.  However, 

the August round saw the ratio explode to values ranging from 82 to 354.  On June 6, the 

Lower Pond was opened to the ocean, removing some 18 million cubic feet from both 

ponds and lowering the water level in the Lower Pond by about 3.5 feet.  From the May 

25 sampling round before the inlet to the June 21 round two weeks after the opening, 

little change in DIN was seen despite the major removal of water from the system.  

However, by early August, ammonium levels in the Lower Pond had dramatically 

increased to 6.8 to 9.6 um/l.  This was accompanied by a substantial freshening of the 
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system from 16 to 18 parts per thousand (PPT) on June 21 to 7.8 to 12.4 PPT in early 

August.  The conclusion is that the Lower Pond varies from being nitrogen limited to 

being phosphorus limited while the Upper Pond is always nitrogen limited. 

 

One possible explanation that requires more investigation revolves around substantial 

input of DIN primarily in the form of nitrate at the Mill Brook (station 1) and Fulling Mill 

Brook (station 4) sampling sites during the June and early August sampling time periods.  

Particularly following the rainfall event on August 8.  By August, the phytoplankton 

concentrations in the Upper Pond were very high with chlorophyll a reaching 117 ug/l at 

Station 5 on August 9.   This number is so high it would be considered as a possible error 

if it weren’t supported by the dramatic increase in the particulate organic carbon (POC) 

concentration found on the same date.  POC is a measure of the suspended particulate 

matter in the water column as is chlorophyll a.  All of this suspended living biomass was 

exported from a fresh water pond with salinity values of around 0.1 PPT into a brackish 

system with salinity ranging from 8 to 12 PPT.  The osmotic change may have killed 

these cells and begun the conversion of their nitrogen into soluble products causing 

dissolved organic nitrogen (DON) and ammonium levels (NH4) to rise dramatically. 

 

During the summer of 2000, orthophosphate levels were much higher in both ponds than 

the concentrations found in 1999.  While the reason is not clear, different weather 

patterns and the limited lifetime of the openings during 2000 may play a role.  In the 

period from June through just before the August sampling round, 1999 saw 2.3 inches of 

rain while 2000 had nearly 12.5 inches.  Increased runoff and streamflow probably played 

a role in the high phosphate concentrations.  It is possible that in 2000, some other micro-

nutrient not tested became a limiting factor leaving excess phosphorus in the water 

column perhaps due to the lack of flushing. 

 

Menemsha and Squibnocket Ponds: 

These ponds were surveyed during 1995 and 1996 in cooperation with the Wampanoag 

Tribe of Gay Head (Aquinnah).   Chlorophyll a concentrations in Squibnocket during the 

growing season ranged between 2 and 10 ug/l, generally in the moderate rating for this 

parameter.  Menemsha Pond had chlorophyll a in the 2 to 4 ug/l range in the highest 

quality rating.  Squibnocket Pond has a large population of rooted macrophytes in the 

southeastern cove which leads to sluggish circulation in the shallow waters (less than 1 

meter). 

 

The data from that survey (Wilcox, 1999) show that Squibnocket Pond  averaged 35 to 45 

um/l of Total Dissolved Nitrogen in the Moderate rating for TDN but ranged up to near 

the lowest quality rating.  Menemsha averaged between 20 and 25 um/l well into the 

moderate quality rating. 

 

In Squibnocket Pond, DIN ranged widely from less than 1 to over 8 um/l.  The averages 

for all stations were less than 4 um/l.  Menemsha averaged less than 2 um/l  and ranged 

from a maximum of 4 to a fraction of a um/l during the course of the study.  The higher 

values in Squibnocket are a reflection of the larger volume of fresh water in the system. 
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Secchi disk depth readings in Squibnocket were near 1 meter from June 1995, through 

early August indicating a substantial amount of phytoplankton or other suspended 

material in the water column.  Menemsha Pond averaged in excess of 2 meters at the 

station in mid-pond through the period from June through August. 

Data from two rounds of water sampling funded by the Wampanoag Tribe in August and 

September 1999, are attached as Table 5. 

 

Summary & Discussion: 

The Upper or western Chilmark Pond: The Upper Pond (western) is a fresh water 

pond that receives all stream input to the entire system from Mill Brook, Fulling Mill 

Brook and an unnamed ephemeral stream through the Allen Farm.  The watershed of the 

Upper Pond is much larger than the Lower Pond.  The Upper Pond is nearly bisected by a 

large sand washover from the barrier beach.  During much of the study period, the two 

halves of the Upper Pond were connected by a shallow channel with observed flow 

continuously to the east.  If compared with data from other fresh waters (ENSR, 2000), 

Station 3 in the Upper Pond falls in the middle of the group for Total Nitrogen (around 

500 micrograms per liter) but jumps up to a concentration found in less than 10% of the 

database in August 2000 (1000 ug/l).  The same is true for chlorophyll a.  Secchi disk 

depth declined to only 0.6 meters at Station 3 in August 2000, where fewer than 7% of 

the database values occur.  In 1999, visibility exceeded 1.3 meters, where the database 

indicates over 30% of the measurements are reported. 

 

During July and August 1999, the Upper Pond at the western end the presence of large 

numbers of colonial bryozoans (Pectinitella magnifica) was notable.  These organisms 

form spherical clusters ranging in size from a softball to a large beach ball.  They are 

common in warm, eutrophic fresh waters (Scott Jackson, personal communication 1999).  

The Upper Pond also has a substantial stand of the rooted aquatic plant Potamegeton 

(broad leaf variety) found primarily in the western half.  In the eastern half of the Upper 

Pond, the narrow leaf variety of Potamegeton is more common but not as dense as the 

population in the western end.  Both varieties are found in the eastern end of the Upper 

Pond. 

 

The eastern half of the Upper Pond displayed a much more substantial phytoplankton 

population than the western portion.  Turbidity values recorded near Station 5 at the 

Doctor’s Creek outlet in August 1999 ranged between 20 and 40 NTUs and the Secchi 

depth was 0.6 meters compared with the western portion of the pond where the Secchi 

depth was over 1.1 meters (disk on bottom).  This theme was picked up by the particulate 

carbon (POC) and chlorophyll a values which were 290 umoles per liter and 117 

micrograms per liter respectively at Station 5 in the eastern end of the Upper Pond in 

August 1999.  In the western end of the Upper Pond (1, 2 and 3) high POC values (from 

57 to 206 um/l) were found but the chlorophyll ranged from 3 to 11 micrograms per liter. 

 

That the streams are sources of inorganic nitrogen is indicated by an average Dissolved 

Inorganic Nitrogen (DIN) value of 8 umoles/liter at the mouth of Mill Brook and 5.5 at 
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the mouth of Fulling Mill Brook.  In the mid pond area at Station 3, the average was 2.9 

um/l.  Throughout the course of the study, there was continuous flow from the Upper to 

the Lower Pond.  At station 5, although the average inorganic nitrogen content is low at 

2.04 umoles per liter, it ranges up to 6.5 during the August 2000 sampling round.  At a 

ballpark outflow of 400,000 cubic feet of water per day going from Upper to Lower Pond, 

the daily nitrogen introduction to the Lower Pond as indicated by station 5 is over 300 

grams. 

 

Rainfall events played a role in the water quality data collected in August 1999 (as 

discussed above) and in August 2000 when over 6 inches of rainfall occurred in the first 

two weeks of the month. 

 

The Lower (eastern Chilmark Pond): The Lower Pond is the site of the cut 

through the barrier beach which drains the system and provides an influx of saline water.  

For this reason, it experiences wide swings in salinity.  It has a barren bottom with very 

few aquatic plants.  Those familiar with the pond do not remember eelgrass in it for at 

least the last 60 years.   

 

The water quality data assembled at stations 6 through 10 in the Lower Pond to date is 

summarized as follows: 

 

Table 4:  Lower Chilmark Pond 1999-2000 Quality Determinants 

Parameter  Range of Values Measured  Quality Rating 

Chlorophyll a   4.4 to 28.1 ug/l  Moderate to Poor 

Total Dissolved Nitrogen 23 to 57 um/l   Moderate 

Dissolved Inorganic Nitrogen < 1 to 14   um/l  Moderate to Poor 

Secchi Disk Depth  0.8 to 1.4 meters  Moderate to Poor 

 

The water quality survey results reported in the discussion above indicate that the Lower 

Pond is impacted by input of nutrients, much of which enter the system in the Upper Pond 

and which then flow through Doctor’s Creek to the Lower Pond.  This pathway is implied 

by the Inorganic Nitrogen data in Figure 7.   In Figure 7, the inorganic nitrogen 

concentration in May and June 1999 at stations 1, 2 and 4 are much greater than in the 

Lower Pond (6, 7 and 8).  This nitrogen is cycled into phytoplankton as indicated by the 

larger values of dissolved organic and particulate nitrogen at station 7 in the Lower Pond 

in Figure 8.  With the failed cuts through the barrier beach in 2000, the pattern of greater 

inorganic nitrogen at the Upper Pond stations remained in place. 

 

Inadequate flushing failed to remove the nutrient load when the Pond was opened to the 

sea during the study period.  Despite the removal of some 18 million cubic feet of water 

during the June 1999, opening (see Task 4), the Upper Pond only dropped 0.5 feet during 

this time because the opening closed within 4 to 5 days.  The lower level of the Lower 

Pond which had dropped over 3 feet from its high stand encouraged the discharge of 

nutrient and organic matter rich water from the Upper Pond.  The influx of groundwater 

and surface water from the Upper Pond into the Lower Pond sets the stage for the low 
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quality seen in August 1999.  A successful August opening is a prerequisite for improved 

water quality.  As the watershed is still only partly built out, a good deal of the lower 

water quality may well be the result of natural eutrophication. 

 

The duration of an opening to the Atlantic Ocean needs to persist for 14 to 15 days for 95 

percent of the water in the Lower Pond to be exchanged for new ocean water (Task 4).  

Over the two seasons of observations, cuts through the barrier beach closed in less than a 

week.  In 2000, the opening closed in a matter of days.  Short duration openings do not 

flush the system and may well carry large amounts of nitrogen into the Lower Pond from 

the Upper Pond and from the increased groundwater discharge along the shore. 

 

The factors which will determine the future water quality in the system are discussed in 

the Tasks which follow dealing with flushing, fresh water input, projected build out and 

nutrient loading.  While it is clear that there are problems in water quality now, we have 

really only started to accumulate the data necessary for a full understanding of the system. 
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COLIFORM BACTERIA SURVEY: CHILMARK POND 

This survey was planned to examine the levels of fecal coliform bacteria in the system 

before and after a rainfall.  Fecal coliform bacteria are an indicator of the possible 

presence of pathogens that may be present from fecal matter deposited by warm blooded 

animals.  The fecal coliform test is an easy analysis to perform when compared to tests 

for human disease causing organisms.  Sources of fecal coliform include migratory and 

resident waterfowl, other wildlife such as otters and muskrat, domestic livestock and 

human sewage.  The results of these surveys need to be examined with the immediate 

potential sources in the vicinity in mind. 

 

The primary pathways for fecal coliform to reach a water body include surface runoff 

from roadways or pastures, stream inputs, direct deposition in the waterbody itself and 

possibly by groundwater.  The groundwater pathway is not likely where septic systems 

are properly installed with appropriate separation from the water table.  It is also a remote 

likelihood where the subsurface soils are sands and gravel along the path of flow from 

septic system to waterbody.  Where subsurface soils are impervious and present an 

opportunity for effluent to flow along a direct pathway on the clay material or through a 

crack or fissure where filtration does not occur, the opportunity for fecal coliform to reach 

a pond by the subsurface route increases.  It is not expected to be a major pathway for 

Chilmark Pond. 

 

Weiskel et al (1996) found that fecal coliform survived much longer in the wrack line of 

algae and seaweed washed up near the shore along Buttermilk Bay.  Their conclusion was 

that fecal coliform could survive from one spring tide to the next allowing the 

increasingly higher tides to wash out bacteria that were deposited in the wrack line two 

weeks prior.  This may also be a source in Chilmark Pond however, during the 1999 

survey period, a well developed wrack line was not seen. 

 

Fecal Coliform bacterial counts are used to decide whether it is safe to use the water body 

for direct contact uses or for shellfish harvest.  The shellfish harvest limit is 14 colonies 

per 100 ml of the geometric mean of the last 15 samples.  The standard for swimming is 

200 or fewer colonies per 100 ml (with up to 10% of the samples over 400 colonies per 

100 ml). 
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Historical Data: 

During late 1988 and 1989, SP Engineering collected regular fecal coliform and fecal 

streptococcus samples at 11 sampling stations.  The data is summarized for that survey in 

Table 6.  Where these stations are close to sample stations used during the 2000 survey, 

the current numbers are used (see Figure 9).  The letter station identifiers are for SP 

stations that do not coincide with the current study.   

 

Table 6   SP Engineering Fecal Coliform Sample Results  Colonies/100 ml 

Station 

# 

9/2/88 6/5/89 7/11/89 8/8/89 9/28/89 

4 <2  22 <2 264 

5 <2  148 6 86 

6 <2 108 <2 16 78 

7 2  4 <2 12 

8 4  6 24 20 

9 <2  4 2 12 

10 4  <2 4 14 

C   <2 2 16 

G 8 76 118 12 68 

J <2  20 6 >400 

K   120 32 >200 

M 14   4 8 

      

 

Stations where elevated fecal coliform levels (over 14) were found more than one time 

include: 

 Cove where Fulling Mill empties #4 

 Doctor’s Creek    #5 

 Off MV Land Bank   #6 

 Near site of opening   #8 

 at the outlet to Doctor’s Creek #G 

 at channel between east and west Upper Ponds #J 

 at the outlet to the westernmost Upper Pond #K 
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The Commonwealth Division of Marine Fisheries has also sampled the pond 

(identification number V32).  Data from 1997 and 1998 is tabulated in Table 7 below.  

Station numbers used in the current survey are substituted for the DMF’s station numbers 

where the station locations coincide. 

Table 7  Division of Marine Fisheries Fecal Coliform Data -- 1997 and 1998 

# 8/20

/97 

9/15

/97 

11/4

/97 

1/27

/98 

2/3/ 

98 

2/12

/98 

3/4/ 

98 

3/24

/98 

4/13

/98 

5/14

/98 

8/11

/98 

10/6

/98 

11/16

/98 

Mean 

1 55 71 >24

6 
<11 <11 <11 51 <2 4 50 137 23 <11 53 

6 90 18 55 <11 <11 <11 <11 <2 <2 >50 88 11 <11 29 

8 55 41 18 <11 <11 <11 <11 <2 <2 14 23 <11 <11 17 

10 <9 <9 9 <11 <11 <11 <11 <2 <2 36 >31

1 
11 <11 34 

11 9 9 >24

6 
51 <11 <11 <11 <2 18 50 51 11 <11 39 

23 29 9 90 <11 <11 <11 <11 <2 14 50 51 23 36 27 
DM

F3 
<9 9 18 <11 <11 <11 <11 <2 <2 22 11 <11 <11 11 

DM

F7 
71 29 29 <11 <11 <11 <11 <2 2 8 >31

1 
<11 <11 40 

 

All stations except off Allen Point show fecal coliform over 14 more than one time and 

all average over 14 except DMF3 off Allen Point.  In this data set, those occurrences are 

mainly during the time of warmer water temperatures, May through November.  The 

average during the December through April period is less than 14 for all stations.  The 

locations with the highest averages appear to be those influenced by one or more high 

results.   These are at the Mill Brook outlet to the Upper Pond (#1), in Gilbert’s Cove 

(DMF7), in the lower part of the Upper Pond cove where Fulling Mill enters the system 

(#11) and at the lower end of Wade’s Cove (#10). 

  

It also seems that during the late spring and summer months any of the stations can have 

high counts (5/14 and 8/11/1998).  Gilbert’s Cove has no houses near the shore and the 

contamination probably results from the waterfowl that roost and feed in the area.  The tip 

of Wade’s Cove receives drainage from a wetland area to the north of the Wade’s Field 

Road.   
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The Chilmark Board of Health sampled 5 stations regularly during the summer months of 

1993 and 1994.  The results are tabulated in Table 8 below.  The analyses were done by 

the Dukes County Water Testing Lab. 

 

Table 8 Chilmark Board of Health Fecal Coliform Data – Colonies/100 ml 

Dates Station ~2 Station 6 Station 8 Station 9 Station SP J 

7/8/93  20 0 4 8 

7//21/9

3 

 tntc* 8 36  

8/3/93  tntc 2 18 tntc 

8/9/93  84 0 2 46 

8/23/93  82 24 38 62 

9/10/93   135 36 14 

6/1/94  82 4 32 32 

6/28/94  34 0 4 2 

7/22/94 50    8 

7/25/94  0 0 4 120 

8/31/94 38 18 4 12 44 

9/20/94 240 64 2 8 30 

      

Mean 109 >48 16 18 >37 

 *TNTC== Too Numerous to Count 

The highest individual counts and the highest means were found off the Land Bank 

property (#6), at the channel connecting the east and west Upper Pond segments (Station 

SP J) and off the Allen Farm (#2). 
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Current Investigation: 

From the data described above, it is obvious that there are wide variations in the fecal 

coliform counts at a given site over the course of a season and even within a given month.  

The two rounds of samples proposed in this study are unique in that samples were also 

collected at road crossings on the contributing streams.  A total of 14 stations were 

sampled on July 17 and another 5 on July 18, 2000 and again on August 14 and 15.  The 

stations are shown in Figure 9.  Station numbers coincide with the water chemistry 

stations sampled at the same locations.  New numbers reflect new stations within the 

pond or stream stations.  The samples were collected, immediately put on ice, refrigerated 

over night and mailed by overnight delivery with the remainder collected on the next day.  

The samples were analyzed by SP Engineering, Inc. for the July round and by the State 

Laboratory (Division of Marine Fisheries) for the August round.  The data are presented 

in Table 9. 

 

Table 9   Fecal Coliform Survey—Chilmark Pond  Colonies per 100 ml 

Station 

# 

Locus 7/17/00 8/14 /00 

1 Upper Pond at Mill Brook outlet 196 1170 

2 Upper Pond at Allen Farm Creek outlet 172 tntc* 

3 Upper Pond mid pond 10 900 

4 Fulling Mill Brook outlet 180 250 

5 Doctor’s Creek west end 4 20 

6 Off MV Land Bank Lower Pond 0 20 

7 West of Long Point  Lower Pond 0 <10 

8 Off inlet site Lower Pond 2 <10 

9 Wades Cove north end  Lower Pond 8 -- 

10 Off Allen Point 12 <10 

11 Upper Pond west of entry to Doctor’s Creek 0 50 

12 East Branch of Fulling Mill Brook at South Road 14 410 

13 West Branch of Fulling Mill Brook at South Road 122 430 

14 Mill Brook at Menemsha Crossroad crossing 26 150 

15 Mill Brook at South Road crossing 105 410 

16 Pond spillway at South Road crossing 500 880 

17 Mill Brook at crossing of dirt road to Weyquobsque 

Cliffs 

108 710 

18 Allen Farm stream at South Road 164 tntc 

19 Duplicate of Sample 11 6 --- 

23 At north end of Wades in marsh 848 40 
 Duplicate collected at same site with second sample bottle 
 *tntc Too numerous to count 

 

Approximately 0.8 inch of rain fell in West Tisbury ending at 8 a.m. on July 16, prior to 

the sample round.  Rainfall is a likely stimulant to release of fecal coliform residing in 
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droppings on roadways, fields and pastures and in the riparian edges of the pond and 

streams.   

  

Sample sites 18 and 23 had no visible flow of water at the July sampling.  Samples 1, 2 

and 4 were sampled in shallow water (less than 1 foot) near the edge of the Pond as close 

to the outlet of the stream as possible.  Station 4 (Fulling Mill) had a strong flow of water 

while the flow was sluggish at Station 1 but the water temperature was 5 degrees 

centigrade cooler than the surface water at Station 3 in mid pond indicating the stream 

outlet.  No flow was visible at Station 2 and warm water temperatures imply little input 

from the intermittent stream.  The Mill Brook entry (#1) into the western end of the 

Upper Pond seems to be diffused through dense wetland vegetation and no defined 

discharge could be found.  At the time of sampling, four horses and a foal were in the 

Allen Farm field that abuts the Upper Pond.  No concentrated area of manure was 

observed on the sloping ground down to the pond shore.   For the August round, 0.9 

inches of rain had fallen in West Tisbury overnight and rain continued heavy at times 

during the 14
th

. 

Conclusions: 

The data collected imply input of fecal coliform from the land side and from waterfowl in 

shallow, nearshore water.  The highest counts occur in the stream systems and in the 

samples collected in shallow water.  The post-rain event data indicate that moderate to 

heavy rainfall sufficient to generate runoff will add fecal coliform to the pond.   

 

The data collected is only adequate to make some suggestions for follow up data 

collection and for some slight modifications to current pasture management practices. 

These recommendations include: 

1. Continue fecal coliform sampling in stream watersheds and the pond. 

2. A follow up sanitary survey should be requested of Division of Marine 

Fisheries and/or Department of Environmental Protection personnel. 

3. Use optical brightener detection pads to determine if there may be 

direct septic effluent input to the streams.  The Retired Senior 

Volunteer Program, Environmental Corps has started this program in 

several streams and should be asked to extend the program to the Mill 

Brook and Fulling Mill Brook waters. 

4. Pasture areas should be fenced at the top of the bluff to keep animals 

from spending much time on the slopes which run to the ponds and 

streams.  This exclusionary fencing can be removed and access 

allowed periodically to graze off the vegetation. 

5. Where possible, cattle crossings and pasture areas which abut the 

streams or pond shore should be shaped to create berms to divert 

runoff to heavily vegetated areas and to prevent direct flow to the 

stream or pond during runoff events. 

6. Road crossings of the Fulling Mill, Mill Brook and the Allen Farm 

Stream should be examined to determine whether runoff can be better 

diverted into riparian vegetated areas to remove fecal coliform 

bacteria.  The Natural Resource Conservation Service may be helpful. 
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 Tasks: 4—Watershed Determination, Hydrologic Budget and Nitrogen 

Loading Limit for Chilmark Pond 

 

4.1 Chilmark Great Ponds Watershed 

Size of the Watersheds: 

The watersheds were determined based on topographic divides from the USGS quad 

sheets (Squibnocket and Tisbury Great Pond) at a scale of 1:25000.  See Figure 10 in a 

separate file.  The watershed contributing to the Upper and Lower Ponds and the channel 

connecting them was measured with a planimeter using three replications to assure 

accuracy.  The sizes of these water sheds is as follows: 

 Upper Chilmark Pond:  92.43 X 106  square feet  2122 acres 

 Lower Chilmark Pond: 44.49 X 106 square feet 1021 acres 

 Connecting Channel: 1.3  X 106 square feet      30 acres 

 

The total watershed for the entire pond system is 3173 acres or 138.2 million square feet.  

The Assessor’s Office lot size data was then used as a check.  The sum of all lots within 

the watersheds plus an estimate for road area which is not included in the lot sizes leads 

to a figure of 3209 acres or 139.78 million square feet. 

 

4.2 Pond Area: 

The area covered by water varies with the height of the Ponds which depends on the state 

of the inlet through the barrier beach.  The area of the ponds during an open pond was 

determined from aerial photographs (3/25/98 flight with scale at 1 inch is 1042 feet) using 

planimeter.  The Upper Pond measured 33.07 acres (1.44 million square feet) and the 

Lower Pond was 145.54 acres (6.34 million square feet) at low water. When the Lower 

Pond is at its highest (about 5 feet NGVD), a large area of wetlands is flooded.  The 

wetlands area was measured by planimeter from aerial  photos (1998) at 79.8 acres which 

brings the Lower Pond (including the connecting channel to the Upper Pond) to a total 

surface area of 241 acres when it is at its highest stage.  The Upper Pond at that stage 

approaches 35 to 40 acres.  

 

These areas were then checked against the area as defined by the bathymetric map of the 

Pond.  During the June opening the pond reached an elevation of about 1.5 feet NGVD at 

low tide and nearly 1.75 feet at mid tide.  The area at and below the 2 foot contour as 

measured by planimeter is 107 acres for the Lower Pond and 26.5 acres (below 

approximately 3.5 feet NGVD) in the Upper Pond.  During a late July survey when the 

Lower Pond stood at 4.1 feet NGVD, its area was 161 acres (7.03 million square feet).  

The Upper Pond at a somewhat higher elevation encompassed 31 acres (1.36 million 

square feet).  Bathymetry and pond volume are discussed in section 4.4. 

 

4.3 CHILMARK PONDS HYDROLOGICAL BUDGET: APRIL 1999 

The hydrological system refills the pond system through discharge of groundwater into 

the Lower Pond and by both stream flow and groundwater discharge into the Upper Pond.  

The Upper Pond discharges through Doctor’s Creek into the Lower Pond.  The model 

used is based on three sources bringing water into the Ponds.  These are: groundwater 



29 

 

discharge, stream flow and direct rainfall landing on the surface of the Pond.  The 

processes operating to offset these sources are: evaporation from the water surface and 

seepage through the barrier beach to the ocean.  The difference between the inputs and 

outflows is the rate of refilling.  The refill rate is the number for which we have the best 

supporting data.  

 

SOURCES OF POND WATER INPUT 

Estimated Recharge from the Watersheds: 

The USGS (1980) estimated the annual recharge for the Vineyard at 22.2 inches on 

average.  Over the watershed for the entire system an annual recharge of 255.7 million 

cubic feet or 1913 million gallons occurs on average based on this figure.  The recharge 

figures found on the Cape range from 23 to 18 inches per year.  A recharge of 18 inches 

over the watershed would amount to 207.3 million cubic feet or 1551 million gallons.  

Gaines (1995) estimated that about 9% of the annual groundwater discharge into 

Sengekontacket Pond occurred during April.  For the Chilmark Great Pond watershed, 

this amounts to 19 to 23 million cubic feet during the month. 

 

In addition to groundwater recharge, some portion of the annual rainfall flows overland to 

the streams and contributes to their daily discharge.  The stream flow is unknown but an 

estimate of the additional contribution from runoff above base flow supported by 

groundwater is 10 to 15 percent of annual rainfall.  The coefficient of runoff for wooded 

areas is commonly assumed to range from 0.1 to 0.2.  The Natural Resource Conservation 

Service estimates runoff coefficients in small watersheds with under 10 percent 

impervious surfaces as being less than 0.15.  The Engineering Field Manual includes a 

method (ES 1014) for estimating annual discharge from watersheds under 2000 acres in 

size.  This method predicts a 90 percent chance of 7 inches of runoff out of the annual 

46.9 inches or 15.0 percent.   Over the 2122 acre watersheds of the main streams 18 to 54 

million cubic feet per year or, on average 0.06 to 0.15 million cubic feet per day are 

added from overland flow.   

 

The April time period influx from streams is calculated below based on several 

assumptions.  I assume that 2/3 of the annual stream flow generated by overland runoff 

occurs during the 5 month period from January through May.  At this time of year, factors 

such as frozen ground, lack of leaf cover and minimal evapotranspiration will encourage 

more runoff.  The range of runoff figures used is from 4.6 inches (10% of rainfall) to 7 

inches (15%).  The calculations are: 

7” X 2 X 2152 acres X 43560 sq. ft.  1    === 0.2414 X 106 cubic feet/day 

 12     3        acre 151days 

 

 4.6” X 2 X 2152 acres X 43560 sq. ft.  1  ===   0.1586 X 106 cubic feet/day 

 12 3      acre   151 days 

 

In addition to the overland input there is steady input of groundwater to keep the larger 

streams (Fulling Mill and Mill Brook) flowing through the summer months.  The small 

stream coming out through the Allen Farm pasture had no flow during this past summer. 
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An investigation of the volume of stream discharge into Tisbury Great Pond (Healy, 

1995) found a combined daily discharge that averaged 0.68 million cubic feet per day 

from the two watersheds (6036 acres, Taylor, MVC, 2000). Proportionally, the 

watersheds of Tisbury Great Pond are about 2.8 times the size of the Chilmark Ponds 

watersheds.  The geology of the two great pond watersheds is similar.  If this proportional 

watershed area factor is applied to the Tisbury Great Pond streamflow to estimate the 

Chilmark Pond streamflow, a flow of 0.24 million cubic feet is predicted.  Although this 

agrees with the estimate developed in section 4.3 for April 1999, it is not clear that this is 

a reliable method to estimate flow.  A factor that confounds a direct comparison of the 

stream flows is the fact that the Mill Brook flows to Tisbury Great Pond through a large 

area of outwash deposits before the stream gauging station which raises the question of 

how much water may have been lost in transit.  The streams flowing into Upper Chilmark 

Pond discharge into the pond from glacial moraine deposits that are more impermeable in 

general.  The combined discharge averaged from the two streams into Tisbury Great Pond 

is just over 1 million cubic feet per day during the January through May period declining 

to an average of about 0.5 million for the remaining 7 months.  About 60% of the annual 

stream discharge occurs during the 5 late winter/spring months in this system. 

 

Direct Rainfall 

On an annual basis Edgartown gets about 46.9 inches as measured at the National 

Weather Bureau weather station there.  The actual figure varies from one end of the 

Island to the other.  This much rainfall intercepted by the Pond area at elevation 4.1 feet 

totals 26.8 million cubic feet on the Lower Pond and another 5.2 million on the Upper 

Pond.  A daily average derived from these inputs is 0.088 million cubic feet per day. 

 

During April 1999, the official gauge recorded 2.11 inches in Edgartown which is well 

below the mean April rain of 4.28 inches.  In my backyard gauge in West Tisbury, I 

recorded 2.56 inches.  If we assume that 2.5 inches fell on Chilmark Pond during the time 

period when it was refilling, a total of 0.048 million cubic feet per day was added to the 

system.  This is about 58% of the amount that would result from the average April rain. 

 

POND WATER LOSS TERMS 

Evaporation 

Evaporation from the surface of small lakes and reservoirs in the area during April is 2.5 

inches (Visher, 1966).  This offsets the estimated addition to the system from direct rain 

although, normally, it would not as average April rain exceeds 4 inches. 

 

Seepage through the Barrier Beach to the Atlantic Ocean 

The time period over which we determine the rate of refilling of the pond system is from 

April 8 through May 4 (see Figure 11 & 12).  Over this time period the Lower Pond rose 

by 2 feet from 2.5 feet to 4.5 feet NGVD.  The relationship between Mean Sea Level and 

the NGV Datum is not known for the south shore, however, on the north shore MSL is 

0.5 to 1 foot above NGVD.  It is likely that, throughout the refilling period under 

consideration, the Lower Pond stood at an elevation above MSL and seepage through the 
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barrier beach to the ocean could be expected to occur.  The rate of seepage would vary 

with the stage of the tide on the south shore, being faster at low tide and quite slow at 

high tide as well as the head difference between pond and ocean. 

 

The amount of seepage is dependent on the nature of the soil materials (their 

permeability), the head difference between Pond and ocean and the area through which 

seepage occurs.  The formula is Q == kiA where Q is the quantity of water discharged, I 

is head drop over the length of the flow path (i.e. pond to ocean), A is the area through 

which the discharge passes and k is the hydraulic conductivity of the beach material.   

 

The value of k for clean sand ranges from less than 10 to over 2000 feet per day.  To 

narrow the range, sieve data from the south shore barrier beach (Wilcox, unpublished) 

was used in the formula k ==A 10d
2 where A is 1 for units of d in millimeters and k in 

centimeters per second.  The term 10d is the particle diameter for the population such that 

10 percent of the sample is finer than this diameter.  Data from three cores (2 to 3 feet 

deep) on the beach face was examined and the range of 10d was from 1.25  to 1.75 .  

The average was used yielding a particle diameter of 0.375 millimeters in the medium 

sand range.  When carried through the formula, k is 0.141 cm/sec or 399.7 feet per day.  

The graphic mean of the particle sizes was also examined as a parameter more 

representative of particle size distribution.  The graphic mean takes into account the 

extremes represented by the particle size where 16 percent is finer and the size where 

84% is finer.  A value of 562 feet per day was derived for k.  Given the location of these 

cores on the beach face which is one of the coarser particle zones on a barrier beach, the 

lower value of 400 feet per day was used with 500 feet per day as an upper range.   

 

The length of beach through which this seepage occurs is 1500 feet in the Upper Pond 

and 6900 feet in the Lower Pond.  No seepage is assumed to occur through the western 

most portion of the south shore of the Upper Pond as this is heavy clay.  The width of the 

barrier beach varies but averages about 300 feet.  The head drop is from Pond level to the 

ocean.  This varies depending on the tide but gradually rises over the 26 days in April 

from 2 feet when the Pond stands at elevation 2.5 NGVD to 4 feet when the Pond stands 

at 4.5 NGVD.  In the Upper Pond, the discharge is through 1500 feet of sandy barrier 

beach, with a pond elevation that would remain above the Lower Pond level.  We have no 

data during the March-April opening for the Upper Pond but, during the June opening, it 

remained at about 4.5 feet NGVD or 4 feet above MSL throughout the drawdown phase 

when the Lower Pond dropped to 1.5 feet NGVD.  For the calculation, we assume that 

there is 4 feet of head from the Upper Pond throughout the April refilling phase.  The 

average daily seepage loss through the Lower barrier beach is 0.2109 million cubic feet 

and 0.0456 through the Upper barrier beach.  For the higher seepage loss term, a “k” of 

500 feet per day was used which indicates just over 0.32 million cubic feet out per day. 
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Pond Refill Volume 

The Lower Pond rose from elevation 2.5 feet NGVD on April 8 to 4.5 feet NGVD on 

May 4.  Volumes at each elevation were estimated by interpolation from the bathymetric 

map.  The increase in volume totaled 13.48 million cubic feet over 26 days or 0.5184 

million cubic feet per day.  During this time, the Upper Pond rose an estimated 2 to 2.5 

feet over the same time period which brings the total volume increase to 0.5757 million 

cubic feet per day.  Table 10, summarizes the figures discussed in the preceding 

paragraphs. 

TABLE 10-- SUMMARY OF HYDROLOGICAL BUDGET OF CHILMARK POND SYSTEM 

Ground-

water 

Recharge Area Volume/ 

Year 

April @ 

9% 

HIGH 

Estimate 

LOW 

Estimate 

 Feet Square 

Feet 10^6 

Cubic Feet 

10^6 

Cubic Feet 

10^6 

Cubic Feet 

10^6/day 

Cubic Feet 

10^6/day 

 22.2/12 138.216 255.699 23.013 0.7671  

 18/12 138.216 207.324 18.659  0.622 

Stream 

Flow 

Runoff/ 

Year 

Area Volume/ 

Spring 

   

 2/3 X 7/12 93.741 36.455  0.2414  

 2/3 X 

4.6/12 

93.741 23.956   0.1586 

Direct 

Rain 

Feet  Pond 

Area 

    

 2.5/12 6.023   0.0418 0.0418 

    INPUT          TOTALS 1.0503 0.8224 

Evap.     0.0483 0.0483 

Seepage     0.3206 0.2565 

REFILL     0.5757 0.5757 

   LOSS TOTALS 0.9446 0.8805 

 

The implication from this table is that the largest input term (groundwater 

recharge/discharge) may be too large in the high estimate.  Alternatively, the estimated 

seepage term (the largest of the water loss terms) may be on the low side. 

 

A check of these estimates can be derived from the early refill data collected by the tide 

gauges immediately after the inlet to the pond has closed (Figure 12).  At this time, the 

Lower Pond is steadily rising but the seepage loss is at its lowest because the head 

between the Pond and ocean is smallest.  In April, the gauge was put in after the inlet had 

closed, so the Pond elevation ranged between 2.50 and 2.92 feet NGVD over the 2 day 

period examined.  During this time, the average daily rise of pond water level was 0.18 

feet per day.  In June, the gauge was in place during the opening, so the earliest pond 

level rise is recorded.  Over the 3 day period examined the average daily rise in pond 

level was 0.156 feet.  With a low pond acreage of 145.5 acres, this implies an average 

daily input of 0.989 million cubic feet during June.  The April influx is greater, averaging 

1.14 million cubic feet per day which may be somewhat low as the pond had already risen 

by about 1 to 1.5 feet when the gauge was placed increasing the seepage loss factor.  
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These figures are net rise in pond level including all the additive factors such as direct 

rainfall as well as negative factors such as seepage and evaporation.  There was no 

measurable rain in Edgartown during the June period and 2.11 inches in the April period.  

These input figures agree reasonably with the estimates developed in Table 10. 
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4.4 CHILMARK POND DEPTH MEASUREMENTS: 

These measurements were taken from the shoreline and bathymetric map created during 

late July and early August 1999 (see Figure 13 in a separate file).  The shoreline and the 

location of depth readings were recorded by Global Positioning System to within less 

than 10 feet.  The elevation of the Pond at this time was determined from a bench mark 

placed by Kent Healy on the north shore of the Lower Pond.  Unfortunately, no 

benchmark was available for the Upper Pond survey site and its elevation is an estimate.  

The area measurements taken from the bathymetric map (500 feet to the inch) are as 

follows: 

 

Lower Pond:     Area X 106 square feet Lower 

4.1 feet NGVD shoreline  7.0275 

2.0       4.66 

0     3.095 

-1.0     0.64 

-2.0     0.535 

Upper Pond 

4.4 feet NGVD shoreline  1.363 

2.0       0.708 

1.0       0.193 

0     0.06  
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CHILMARK POND VOLUME CALCULATIONS: 

The volume was calculated by two simple methods.  In the first, the area within a given 

contour interval was multiplied by the average depth within that interval and the volumes 

summed.  The second method is after Reid (1961) which uses the following formula: 

 

  1/3( A1 + A2 + SQRT (A1*A2)H 

In the formula, A1 and A2 are the areas of two adjacent contours and H is the depth 

interval of those two contours. The formula is applied to each pair of contours and the 

results summed.  During the time of the late July survey when the Lower Pond stood at 

elevation 4.1 NGVD, the volume in the Lower Pond is estimated at 24.3 million cubic 

feet while the volume in the Upper Pond is 3.1 million cubic feet.  In addition, the 

channel connecting the two ponds holds about 0.06 million cubic feet.  Total system 

volume was about 27 million cubic feet. 

 

At high stage, the Lower Pond will stand at about elevation 5.1.  The Lower Pond holds 

an additional 7.97 million cubic feet at this time for a total of 32.27 million cubic feet.  

This is an increase of about 1/3 over the volume at the time of the survey.  This estimate 

includes all flooded wetlands (assumed average depth is 0.5 feet) as well as the channel 

connecting the two ponds.   

 

As some flow was found from the Upper Pond into the Lower throughout the study 

period, it appears that the Upper Pond stands at a somewhat higher elevation than the 

Lower Pond at all times, however the elevation does not appear to vary during the drain 

down by such a large factor.  I estimate that, at high pond, it holds an additional 0.57 

million cubic feet for a total of 3.67 million.  Total system volume at high stand is 35.94 

million cubic feet. 

 

At low pond in June (see Figure 14), the Lower Pond reached an elevation of 1.5 feet 

NGVD at low tide.  With the limited tidal data available, the tide range is estimated at 

0.45 feet with mid-tide at about 1.7 feet.  The volume below the 1.5 foot depth contour is 

estimated at 18.1 million cubic feet using the same methodology as discussed above.  At 

that time, the Upper Pond had only dropped 0.5 feet, which indicates a volume of 3 

million cubic feet still in the system.   

 

By subtracting low pond system from the high pond system volume, the combined Pond 

system discharged about 18 million cubic feet during the initial drain down phase for the 

June 1999 opening.  This is about 55 percent of the Lower Pond volume. The Upper Pond 

during the same opening dropped about 0.48 feet which represents less than 10 percent of 

its volume.  As a result of this differential drop, the gradient between the two ponds 

increases and flow through the channel to the Lower Pond increases.  With a persistent 

inlet, the Upper Pond would eventually discharge enough water to approach the elevation 

of the Lower Pond.  For comparison, Gaines (1993) estimated 60 percent of the water in 

Edgartown Great Pond was emptied during the November 1993, opening. 
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4.5  Chilmark Pond Tidal Flushing: 

The tidal prism as measured during the June 1999, inlet was on the order of 0.45 feet.  

The inlet was tidal for approximately 4 days (June 6 through June 10).  See figure 14 for 

the change in Lower Pond level and Figure 15 for the changes in the Upper Pond level 

during this time. The opening persisted during the lunar third quarter.  The tide range 

obtained from the recording tide gauge during this time is probably somewhat on the low 

side of average.  We can estimate the flushing time for the Lower Pond by dividing the 

volume of the tidal prism into the volume of the Lower Pond at low stage.  It is 

appropriate to use the low pond volume for the flushing time calculation as, at mid pond 

volume, the tidal action would be greatly suppressed due to the relative height of the pond 

compared to the ocean.  The tidal prism is the product of the tide range multiplied by the 

area of the Lower Pond at low water.  This volume is calculated as: 

 0.45’ X 4.269 X 106 square feet == 1.92 x 106 cubic feet per tide 

In order to calculate the flushing time, we divide the pond volume by the prism but must 

also multiply by a conversion factor that takes into account that there are less than two 

tidal cycles per day.  For Chilmark Pond the time to complete one cycle is 12 hours and 

43 minutes on average.  There are 1.89 tide cycles per day.  This is 0.53 days per tidal 

cycle. Residence time is: 

 

18.1 X 106 cubic feet  X 0.529 days == 4.98 days flushing time 

1.92 X 106 cubic feet 

During much of the time the inlet was tidal, the tide curve was ebb dominated reflecting 

the steady input of fresh water from the Upper Pond into the Lower Pond and exiting the 

system.  Ebb tides lasted 6 hours and 38 minutes on average while flood tides were only 6 

hours and 5 minutes long. 

 

The actual residence time of the system will require approximately three cycles equal to 

the flushing time for 95 percent exchange of Lower Pond water for Atlantic Ocean water.  

This happens because water beginning at the head of Wades Cove or at the western end 

near the MV Land Bank property does not make it all the way out of the inlet before the 

ebb tide has turned to flood.  Some of the old water is pushed back into the recesses of the 

pond with each flood tide and the 0.45 foot tide range does not consist entirely of new 

Atlantic Ocean water.   Formulas which follow a diminishing return curve best describe 

the exchange process found in coastal ponds with restricted inlets. 

 

The estimated time for 95 percent flushing of Chilmark Lower Pond is 14.9 days.  Inlets 

of this duration should be the target for pond sewers managing the system.  For 

comparison, the time required to flush Edgartown Great Pond to the 95 percent exchange 

level is 15 days (Gaines, 1993).  It is important to note that, during the two year study, the 

lifetime of the openings was much less than the 95 percent residence time.  Both cuts 

during 2000, failed to last more than a couple of days and probably brought very little if 

any new water into the system. 
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The steady input of fresh groundwater and stream discharge into the system also offers a 

source of flushing as the pond water seeps through the barrier beach to discharge into the 

Atlantic.  If we average the annual fresh water inputs and divide into the volume of the 

Lower Pond when it is at 4.1 feet, the flushing time is indicated at 23 to 29 days under 

average conditions. Using the seepage loss term as a flushing factor, about 100 days are 

required for a volume of water equal to the Lower Pond volume (at high pond) to exit 

through the barrier beach.  Given that the time interval between cutting inlets to the sea is 

3 to 4 months, the maximum flushing time is about 90 to 120 days. 
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Figure 15: Upper Chilmark Pond Water Level
June 1 thru 30, 1999

Note: Water Level in this Pond is estimated to be ~0.25 feet higher than the highest level in the Lower Pond

This Datum is Used to Establish the Pond Level here but it is Approximate

 
 

4.6 Nitrogen Loading Limit: 

Lower Chilmark Pond is a coastal salt pond that receives periodic influx of salt water 

from inlets cut through the barrier beach.  After these breaches are healed by longshore 

drift of sand, the Lower Pond salinity is diluted by groundwater input and discharge of 

fresh water from the Upper Pond.   The Upper Pond appears to remain fresh under normal 

conditions. 

 

Phytoplankton growth in salt water bodies is typically limited by the availability of 

nitrogen in the form of nitrate, nitrite or ammonium.  This is called the nitrogen limit.  

The other major nutrients required for growth are carbon, hydrogen, silica and 

phosphorus.  The first two are abundant and do not limit growth.  The nitrogen limit is 

partly the result of the ratio of nitrogen to phosphorus required in the tissue of 

phytoplankton which is normally about 16 to 1.   In other words, in average tissue, 16 

atoms of nitrogen are required for every phosphorus atom.  If provided in excess, growth 

will continue to increase until some other nutrient or environmental factor limits its 

increase.  At some point, such minor nutrients as iron or manganese may become a 

growth limiting factor if all major nutrients are widely available. 
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The following discussion is partially drawn from Gaines (1998) who devised nitrogen 

loading limits for Edgartown Great Pond which, in many ways, is similar to the Lower 

Chilmark Pond.  The Upper Pond, being fresh, is probably not limited by nitrogen, 

however, it is a source of nitrogen discharge into the Lower Pond which probably is 

limited by nitrogen at least during the growing season (May through September, see 

discussion in Task 2).  The Buzzard’s Bay Project (Costa, 1999) proposed a process for 

estimating the amount of nitrogen that a coastal pond system can tolerate before 

undesirable deterioration of such factors as dissolved oxygen, turbidity, loss of eelgrass 

beds  and excessive growth of wrack algae developed.  The relationship between nitrogen 

loading and pond water quality is a difficult one to establish with absolute certainty.  The 

relationship was drawn by using flushing estimates (Vollenweider, 1976), the volume of 

the pond system and the desired water quality goal for the pond.  The nitrogen loading 

capacity (or tolerance) was linked directly to the rate of flushing of the water body.  The 

flushing rate can be approximated by the pond volume and the size of the tidal prism.  

The formula that was developed by the Buzzard’s Bay program (Costa, 1999) is: 

 

  Qn ~ Qc * Va* Vr Where:    Qn is the critical nitrogen limit 

       r        Qc is the nitrogen loading rate limit 

           Va is the average volume of the pond 

           Vr is the Vollenweider flushing period 

             r is the residence time for the system  

The appropriate values for Qc were derived by the Buzzard’s Bay Program using the 

Commonwealth’s water classes in 314CMR4.00 as a framework.   There are presently no 

nitrogen loading limits in the surface water classification system in 314CMR4.00, 

although that is now under study.   In Table 11 as well as Tables 12, 14 and 15 descriptive 

quality categories are substituted for the surface water classifications.  

 

Table 11-- Recommended Nitrogen Loading Rate Limits for Coastal Embayments 
  Modified from: Costa, 1999, Buzzard’s Bay Program 

Embayment Reduced Quality 

Waters 

Good Quality 

Waters 

Highest Quality 

Waters 

Shallow  300 mg/M3/Vr 150 mg/M3/Vr 50 mg/M3/Vr 

    

Deep 400 mg/M3/Vr 200 mg/M3/Vr 75 mg/M3/Vr 

    

mg = milligrams g = grams M3 = meters cubed  
Shallow is defined as having 40% or more of the area less than 2 meters deep or having an average 

MLW depth of 2 meters or less.  

 

For purposes of conveying a clear picture of the implications of each nitrogen loading rate 

level, the following manifestations of each level are proposed as guidance. These 

symptoms should be thought of as occurring on a continuum of nitrogen loading rather 

than being confined to the loading figure used.  There is no strict relationship yet 

established between the loading rate, the classification and the manifestation of nutrient 

loading impacts.  Currently Chilmark Pond, Menemsha and Squibnocket Ponds are rated 
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as SA waters due to their being “…subject to the rise and fall of the tide…” 

(314CMR4.00). 

 

Highest Quality Waters: 

In terms of water quality indicators, at this level of nitrogen loading and flushing coastal 

ponds should show little degradation from the pristine, natural state.  They should be 

useable for fishing, shellfishing, swimming and be aesthetically pleasing.  There may be 

some accumulation of macroalgae such as Ulva (sea lettuce) or Enteromorpha and 

localized eelgrass bed decline but these occur primarily where the nitrogen inputs enter 

the system.  This classification is comparable to the Buzzard’s Bay Program’s (BBP) 

Stage 1 condition. 

 

Good Quality Waters:  

These waters are useable for fishing, shellfishing in designated areas, primary contact 

(swimming) and should be aesthetically pleasing.  They are excellent habitat for fish and 

aquatic life.  In waters characterized by this level of nitrogen loading and tidal flushing, 

there may be periodic elevated chlorophyll in the water column, some eelgrass bed 

decline and seasonal reduction in transparency below 3 meters.  Corresponds to Stage 2 

of the BBP system. 
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Reduced Quality Waters:  

These waters may not be suited to shellfishing without depuration but are useable for 

fishing, primary contact (swimming) and are aesthetically pleasing.   In waters with this 

combination of nitrogen loading and flushing, the onset of eelgrass bed decline is obvious 

and eelgrass may be absent, seasonally the chlorophyll levels are moderate to high and 

macroalgae may be excessive in areas.  Hypoxia (low dissolved oxygen levels) seasonally 

in summer when the system becomes stratified or during periods of limited mixing of the 

water column.  Corresponds to Stage 3 of the BBP system. 

 

Lowest Quality Waters:  

These waters are not suited for shellfishing or swimming, but secondary contact uses such 

as fishing, boating and hiking are acceptable.  Eelgrass is absent, masses of macroalgae 

are common through the growing season and hypoxia and anoxia are found in the deep 

and even shallower portions of the system.  If the pond does not develop macroalgae, the 

phytoplankton levels are periodically high making water column visibility very low.  

Dissolved inorganic nitrogen levels are 10 um/liter or more during the growing season 

indicating nitrogen is no longer the limiting nutrient. 

 

A number of studies have attributed declining water resource quality to increasing 

nutrient loading (Valiela, 1995).    The following breakdown of the manifestations of 

increasing nitrogen loading is drawn from Costa et al (1996) and NOAA (1996). 

 

Parameter    High Quality    Moderate Quality Lower Quality  

Dissolved oxygen   >90% saturation 75 to 90% 60 to 75% 

Total Dissolved nitrogen  <7 um/l  7 to 40 um/l 40 to 70 um/l 

Dissolved Inorganic nitrogen  <2 um/l  2 to 7 um/l 7 to 10 um/l 

Chlorophyll a    0 to 5 ug/l  5 to 10 ug/l 10 to 20 ug/l 

Secchi depth    3 meters or more 3 to 1 meters 1 to 0.6 meters 

Macrophytes    limited quantities moderate       moderate to severe 

NOTE: These symptoms are provided to give the reader some sense of the implications of 

different levels of nitrogen loading. 
 

The Lower Chilmark Pond is unlike the ponds for which this Buzzard’s Bay Program’s 

system was crafted in several important ways.  First, it is only opened to the Atlantic 

Ocean for limited periods of time.  Most of the time it is not subject to tidal flushing at 

all.  The flushing time necessary when the Pond is open to the ocean for 95 percent 

exchange is about 14.9 days, however, when it is closed for 2 or 3 months it flushes at a 

different rate depending on seepage through the barrier beach.  However, given the 

fragility of these coastal resources it is worth applying the formula as a tool for 

determining the level of concern that should be given to the management of nitrogen 

loading.  There are some symptoms of nitrogen loading that are already showing at the 

current loading level as discussed in the water quality section of this report. 

 

The hypsographic curve derived from the bathymetric survey (Figure 16) indicates that 

the mean depth of the Lower Pond is less than 4 feet putting it into the “shallow” 

category.  Its flushing time is 14.9 days at best.   The longest non-tidal flushing period is 
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about 25 to 30 days which is the time required for the groundwater and stream inputs to 

equal the volume of the pond at 4.1 feet elevation.  The flushing time period between 

cutting inlets of 90 days is also used to derive a range of possible nitrogen loading limits 

for the system.  The system volume used in these calculations is the low pond stage 

volume for the 14.9 day residence time when the inlet is open and the volume at pond 

elevation 4.1 feet for the longer flushing time intervals. 

 

 
 

Table 12  Nitrogen Loading Limits for Chilmark Lower Pond 
Based on the Buzzard’s Bay Program Formula NOT part of 314CMR4  

 In Kilograms/Year 

Embayment Reduced Quality 

Waters 

Good Quality 

Waters 

Highest Quality 

Waters 

Shallow R = 

14.9 

 4522 2261 753 

Shallow R = 25 3802 1901 633 

Shallow R= 90 1252 626 209 

 

The suggested loading limit for the Lower Pond system is the target for the Good Quality 

rating or 1901 kilograms per year. This loading limit will be very difficult to meet 

therefore the limit for Reduced Quality loading of 3802 will also be examined.  The 

Upper Pond, being a fresh water system does not fit into the nitrogen loading model. 
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Task 5   Squibnocket Pond Watershed: 

5.1   Geologic Setting: 

The surrounding uplands are mapped as Qgh, the Gay Head Moraine.  The moraine 

includes not only glacial till applied as a veneer over the underlying materials but the 

underpinnings are composed of imbricated (stacked) thrust sheets of pre-glacial coastal 

plain sediments including all of the various beds exposed in the Gay Head Cliffs at the 

west tip of Aquinnah.  As many of the coastal plain materials are impervious clay, the 

groundwater flow to Squibnocket is quite complex. 

 

These relatively impervious materials support large areas of wetlands developed in 

perched water tables and several streams flowing into Squibnocket Pond (see Table 13 

below).  The streams include Black Brook, an unnamed drainage out of Black Pond to the 

east and another to the west. 

 

Watershed and Pond Area: 

Gaines (1990) described the nature of the Squibnocket and Menemsha Pond watersheds 

as in Table 13. 

Table 13:  Squibnocket and Menemsha Ponds Watersheds (After Gaines, 1990) 

FEATURE Area in Square 

Kilometers 

Area in Acres 

SQUIBNOCKET   

Total Area 7.930 1960 

Terrestrial 5.410 1340 

             Wetland 1.24   310 

             Non-wetland 4.17 1030 

Aquatic 2.52   620 

             Squibnocket 2.51   620 

             Black Pond   

              Lily Pond   

MENEMSHA   

Total Area 11.85 2930 

Terrestrial 8.68 2140 

Aquatic 3.2   790 

             Menemsha 2.71   670 

             Nashaquitsa 0.36     90 

             Stonewall 0.13     30 

Wetland areas are those  mapped as such on USGS  Maps (1972) 

   

 

The present study estimated watershed area by planimeter from a USGS topographic 

sheet (Squibnocket Quadrangle) and this was checked by summing the acreage from the 

Assessor’s data for all lots in the watershed plus an additional acreage for roads not 

included in the lot acreage.  The acreage for the Squibnocket Pond watershed from the 

Assessor’s data is 1303 acres and from the USGS map 1239 acres (see Figure 17).  For 
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the Menemsha Pond watershed, the area is 1793 acres by the Assessor’s data and 1856 

acres from the USGS map (Figure 18). 

 

Gaines (1990) describes the formation of Squibnocket Pond as the drowning of a 

depression in the glacial moraine as sea level rose following the last glaciation.  As such, 

its age is probably less than 7000 years.  The southwest shore is a baymouth barrier beach 

connecting the upland to the northwest and to the southeast.  This is a permeable geologic 

deposit and is probably a pathway for discharge from Squibnocket Pond as seepage 

through the beach face when the ocean is lower.  In addition, the Pond drains through the 

Herring Creek some 1700 feet into Menemsha Pond.  The Creek is also a source of flood 

waters from Menemsha Pond.  The Creek flows through two cement box culverts used in 

trapping the herring during the spring run.  There is also a 6 foot diameter culvert under 

State Road.  At low tide in June 2000,  the water depth was 6 inches or less over the 

bottom of the two box culverts and about 18 inches in the State Road culvert.  Each of 

these structures influences the flow in and out of Squibnocket Pond.   In the past the pond 

was connected to the Atlantic via an inlet through the southwest barrier beach shown on 

maps from the late 18
th

 century.  Later maps indicate an inlet at the southeast corner of 

the Pond and there are remains of a wooden sluiceway in place into the early 1900’s still 

to be found today (Gaines, 1990). 

 

5.2 Hydrologic Budget and Flushing: Squibnocket 

Previous Work: Gaines (1990) found the pond to average 10 parts per thousand 

salinity indicating it to be about 2/3 fresh water and 1/3 Menemsha Pond water based on 

measurements in May and August 1989.  He found the salinity readings to be relatively 

constant around the Pond.  A survey funded by the Wampanoag Tribe in 1995 (Wilcox, 

1999) found the salinity to range between 11 and 12 PPT through the year (10 sampling 

rounds) at 4 stations throughout the Pond.  Gaines estimated a pond volume of 6.3 

million cubic meters (222.5 million cubic feet or 1.68 billion gallons) derived from the 

2.51 square kilometer area (620 acres) and an average depth of 2.5 meters (8.2 feet).  Of 

this total volume, 2/3 or 4.2 million cubic meters is fresh.  With an estimated average 

daily input from streams and groundwater of 13.9 thousand cubic meters, the flushing  

time for fresh water was estimated as 302 days for fresh water. 

 

The remaining 2.1 million cubic meters is saline (Menemsha Pond) water.  The average 

daily volume of Menemsha Pond water entering Squibnocket Pond was estimated as 11.6 

thousand cubic meters (Gaines 1990).  This influx was estimated from tidal current flow 

data as the pond level itself did not show a tidal curve during the one week period shown 

in that report.  Gaines observed, in regard to typical tidal curve expression, that “… this 

was not observed in terms of surface elevation changes during our period of 

measurements.”  Dividing the daily input into the average total volume of Menemsha 

Pond sea water in Squibnocket gives a flushing time of 181 days for salt water. 
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Hydrologic Budget- Present Study: 

Fresh water inputs from groundwater, streams and precipitation is an important part of the 

total water budget for this system, particularly when it is non-tidal.  Using an annual 

average recharge of 22.2 inches over the 1300 acre watershed, the annual groundwater 

contribution to the system is 0.288 million cubic feet per day.  Stream flow from direct 

runoff, based on the area of the stream watersheds and the assumptions used to estimate 

stream flow to Chilmark Upper Pond, is on the order of 0.046 million cubic feet per day.  

This figure is in excess of the portion of the groundwater recharge that enters the streams 

flowing to the pond.  Direct precipitation less evaporation contributes 0.159 million cubic 

feet per day.  The total annual input is 0.493 million cubic feet or 13690 cubic meters per 

day which is very close to Gaines estimate (1990). 

5.3 System Flushing-Present Study:  

Over the course of 4 weeks a Global tide gauge was placed in Squibnocket Pond to the 

east of the Herring Creek channel.  The gauge was set to record at 10 minute intervals 

during the time it was in place. Over the period from October 28 through November 19 

the Pond exhibited a cyclic pattern of pond level variation known as a diurnal tide 

consisting of one high tide and one low tide each day (see Figure 19 in a separate file).  

Over this 22 day period, 22 tidal cycles were measured with the average tide range of 0.47 

feet or slightly less than 6 inches.  The tidal pattern in Menemsha Pond is semidiurnal 

having two high tides and two low tides in each 24 hour period.   NOTE: This pattern is 

now thought to have resulted from a restriction in the air pressure compensating vent.  

This possibility is supported by the November water level shown in Figure 20 that does 

not display daily fluctuation. 

 

The tidal curve recorded from the 19
th

 of November through the 10
th

 of December (see 

Figure 20) is more like the water level response recorded by Gaines (1990).  The Pond 

level oscillates rapidly over a 24 hour period with a range of 0.1 to 0.15 feet during four 

discrete time periods separated by days with little oscillation.  These oscillations are 

superimposed on an eight day rise of pond level by about 0.1 feet followed by a similar 

decline during the next eight days. The pond level then rises by about 0.2 feet over the 

next day (December 6).  The rise in water level results from 1.74 inches of rain that fell 

over a 2-day period (National Weather service Observer, Edgartown).  This long term rise 

and fall is not tidal but may be a manifestation of the spring to neap tidal cycle.  The tide 

gauge was replaced on November 19
th

 accounting for the slight change in depth over the 

arbitrary datum however, the gauge location and placement in the stilling pipe was the 

same.   

 

The cycle was checked a second time in April 2000.  During the entire 28 day period 

there are no discernible regular tidal oscillations.  The sharp rise in pond level on March 

17 is a response to rainfall in excess of 3 inches (Lovewell, Edgartown).  See Figure 21. 

 

It is puzzling that the change in pond tidal regimes occurs coincident with the change of 

recording equipment.  A check with Global Water indicates that if the vent for pressure 

compensation were blocked, there could be diurnal variations in response to this 

blockage.  
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The rapid oscillations in both Figures 20 and 21 are thought to be seiches, a phenomenon 

where the water level in a pond sloshes back and forth around a pivot node usually in the 

center of the pond.  The phenomenon is often a response to an outside force such as wind 

or even an earthquake.  An examination of wind data from the Nantucket weather buoy 

44008 (latitude 40 degrees 30’ 1” N and longitude 69 degrees 25’ 54” W) indicates,  for 

the seiche on 5 December, that northwest winds of 10 to 25 mph swung to the southwest 

and south at 5 to 10 mph by 15:00 followed by south and south-southeast winds 

increasing to 8 to 15 mph by 1 a.m. on the 6
th

.  The oscillations began about the time the 

wind shifted almost 120 degrees from northwest to south (Figure 20 in a separate file).  

They continued as the wind backed to the south and south-southeast. 

 

On March 11 and 12 in Figure 21 (in a separate file), a northeast wind at 10 miles per 

hour shifted to east at 15 to 26 mph as the oscillations began to build.  After 8 hours of 

east wind and building oscillation height, the wind shifted to southeast at the same speed 

for 20 hours.  This wind continues into the dampening of the seiche oscillations but a 

wind shift to the south and quickly to the southwest (at the same speeds) ended the seiche 

phenomenon.   

 

Two seiche events can be seen in the tide curve for the period from April 1 through late 

on April 4.   The wind was from the southwest most of April 1 but shifted to the south 

and south-southwest at the onset of the oscillations at noon on April 2.  The wind also 

picked up speed from 6 to 8 mph prior to the seiche start up to 10 to 18 during the onset 

of the seiche.  The phenomenon ceased when the wind turned more from the southwest 

despite the wind speed of 16 to 19 mph.  Prior to the second seiche, wind speed was 8 to 

10 mph from the south from 14:00 on the 3
rd

 to 02:00 on the 4
th

.  At that point, wind 

speed increased to 15 to 20 from the south until noon and then rose to 20 to 25 from the 

south-southwest.  The seiche was strongest under the influence of the south wind. 

 

It is possible that the two different types of water level curves may relate to a combination 

of wind speed and direction and tide stage that causes the pond to be tidal at some times 

and non-tidal at others.  The tidal period in early November extended over both Neap and 

Spring tides.  This phenomenon should be examined in greater detail as the flushing 

varies widely between the tidal and non-tidal conditions. 

 

Pond Area & Volume: 

The area of the Pond was calculated from the USGS Squibnocket Quad map by averaging 

three repetitions with planimeter.  The average area ranged between 25.99 million square 

feet (601 acres) and 26.29 million square feet (603 acres).  The product of the tide range 

and the area of the pond is the tidal prism.  The prism recorded in early November 

represents the exchange of approximately 12.3 to 12.4 million cubic feet per day or 

348000 cubic meters per day.  This is significantly greater than that measured by 

Gaines(1990) however, it is only a portion of the observed tidal flushing as it is followed 

by a 3 week period with a “tide range” of a little over 0.1 feet over a 12 to16 day period.  

This is cause for concern.  The approximate average daily flow during this period based 
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on water level only is 6168 cubic meters per day which is about 60 percent of Gaines’ 

estimate based on tidal currents.  

 

The volume of the Pond is estimated at 175 million cubic feet (4.98 million cubic meters) 

which is considerably less than Gaines estimate.  This figure is derived as discussed for 

Chilmark Great Pond.  The area between each pair of bathymetric contours was 

calculated and multiplied by the average depth.  The contours are those prepared by the 

Wampanoag Tribe (Walsh et al, 1979).  Gaines (1990) had estimated the volume at 6.3 

million cubic meters by the product of the area and the mid depth.   

 

The flushing time during the diurnal tide time period is 14.2 days.  If the Pond always 

exhibited diurnal tide cycles, the time for 95 percent exchange of old Squibnocket Pond 

water with new Menemsha Pond water would be 42.6 days.  This is because each flood 

tide pushes old water back into the system such that a portion of the new tide prism 

includes old water.  Given the subsequent late November and April lack of a tidal cycle, 

on average I would suggest that the exchange time be based on the time required for the 

fresh water inputs to the system to equal the pond volume. This figure is 354 days.  

Additional tidal data is a priority to determine the average annual conditions. 

 

5.4 Squibnocket Nitrogen Loading Limits: 

In addition to flushing, another determinant of the tolerance of the system for nitrogen 

loading is the depth of the pond.  From the hypsographic curve for Squibnocket Pond, the 

mean depth is 4.7 feet (Figure 22).  This places the system just into the shallow category 

(mean depth less than 2 meters) for nitrogen loading limit calculations. In addition, over 

40% of its area is less than 1 meter which also indicates it is a Shallow system. In Table 

14, the range of acceptable nitrogen loading limits are shown for differing water resource 

quality targets.   

Table 14--  Nitrogen Loading Limits for Squibnocket Pond 

  Based on the Buzzard’s Bay Program Formula  In Kilograms/Year 

Embayment Reduced Quality Good Quality Highest Quality 

Shallow 43 days 17064 8532 2844 

Shallow 354 

days 

3037 1519 760 

 

The suggested goal for Squibnocket is the Good Quality rating which calls for a loading 

limit of 1519 kilograms per year.  Unfortunately, this goal is probably not obtainable even 

with the lowest growth projections.  In a Pond where the primary use of the resource is 

for shellfish production, high phytoplankton populations may not be a problem provided 

that hypoxia (low oxygen levels) does not impact the shellfish. The Squibnocket system 

was found to show some symptoms of eutrophication during the Gaines study (1990) and 

in a year long survey carried out in 1995 by the Wampanoag Tribe (Wilcox, 1999).  

These symptoms include high phytoplankton populations, poor water column 

transparency, occasional elevated levels of nitrogen and high levels of Total Organic 

Nitrogen.  No problems with low levels of dissolved oxygen were reported by either study 

however, no continuous, overnight measurements were taken.  There is a potential for 
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overnight low oxygen and a survey of oxygen content over several 24 hour periods should 

be done in August at depth in the Pond.  These early symptoms suggest the need for 

caution in adopting a nitrogen loading limit until further study of the pond system brings 

greater clarity to the nutrient cycling and limitations. The loading limits for Reduced 

Quality waters are a reachable target with the longer flushing time of 354 days 

calling for a limit of 3037 kilograms per year.  However, steps should be taken to 

improve circulation and reduce the flushing time to improve the resulting water quality. 

 

Tidal Flow through the Herring Creek: 

A survey of the Creek bottom indicates that there are several points where the tidal flow 

is potentially restricted.  While this survey has not yet been tied in to a bench mark or to 

mean sea level, it identified that there are places where adjustments could be made to 

enhance flow.  These include the cement box culvert used for trapping the herring.  While 

the width of the wooden structure leading in to the catching area is 5 feet, the box culvert 

is only 2.8 feet.  The depth of water over the bottom of the wooden structure was 2.8 feet 

but was less than 1 foot over the floor of the cement culvert on August 17, 2000 near low 

water in Menemsha Pond (Menemsha Bight low at 3:15 p.m.).   

 

Figure 23 (in a separate file) shows the Creek bottom elevations at mid-channel to scale 

on the vertical axis only.  The distance from the elevation labeled box culvert to the State 

Road culvert is about 340 feet.  There is an area behind the new shellfish hatchery 

indicated as “rapids” in Figure 23 where the bottom rises up to an elevation that is 0.5 to 

1.5 feet above the elevation of the floor of the box culvert and 2.9 to 3.9 feet above the 

base of the wooden, drop-board structure.  Further toward the culvert under State Road, 

the bottom of the Creek is very close to the elevation of the floor of the box culvert. 

 

First step options to increase the flow through the Creek appear to include increasing the 

size of the cement box culvert and deepening the bottom of the Creek in the shallow area.  

The length of channel that would require deepening is about 150 to 200 feet.  Deepening 

it to the level of the base of the cement box culvert would very likely increase flow into 

Squibnocket Pond.   

 

Prior to taking any of these steps, a thorough evaluation is needed of the implications for 

Squibnocket Pond should increased flow bring higher salinity to the system.  In addition, 

the survey should be tied in to mean pond level in Menemsha and Squibnocket Ponds to 

assess how much additional tidal flow might result.  The portion of the Creek between 

State Road and Squibnocket Pond also needs to be examined to identify any other shoals 

or obstructions.  The potential for long lasting water quality improvement through 

increased flushing of the system warrants a close look at this possibility. 
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Task 6 Menemsha Pond: 
6.1       Menemsha Pond Watershed: 

The watershed is 1793 acres as indicated from the Assessor’s data and 1856 acres as 

measured by planimeter from the USGS Squibnocket quad sheet.  The watershed is 

described more fully in Section 5.1 above. 

6.1       Pond Bathymetry and Tidal Flushing 

Menemsha Pond is a fully tidal pond of 665 acres (current study) up to 670 acres (Gaines, 

1990).  It is connected to Nashaquitsa Pond (90 acres) via a restricted channel.  A large 

culvert under South Road joins Stonewall Pond (30 acres) to Nashaquitsa.  The total 

system is 784 to 790 acres or 34.41 million square feet.  The tidal prism on a daily basis is 

over 166 million cubic feet.  Compared with this large volume, the daily fresh water input 

of 0.647 million cubic feet is insignificant and will not be used in determining flushing. 

 

Menemsha Pond holds 134 million cubic feet of water at Low Tide.  At High Tide, an 

additional 73.25 million cubic feet of water are in the pond.  At Low Tide Nashaquitsa 

and Stonewall Pond hold about 5.9 million cubic feet while at High Tide about 18.55 

million cubic feet are in these two ponds.  The mid-tide volume for the entire system (179 

million cubic feet) will  be used to calculate nitrogen loading limits. 

 

Tide gauges were placed at the West Basin, at Hariph’s Creek and in the southwest corner 

of Menemsha Pond between October 26 and November 1999 recording water level at 10 

minute intervals.  See Figures 24 and 25 (separate file).  The average tide range at the 

West Basin was 3.03 feet while it averaged 2.9 at Hariph’s. A gauge at the southwest 

corner of Menemsha Pond near Herring Creek outlet averaged 2.34 feet but this was 

during a one week period only.  The tide curve at Hariph’s is strongly ebb dominated with 

1.94 tidal cycles per 24 hour period.  At West Basin the cycle is flood dominated with 

1.93 cycles per 24 hour time period.  The flushing time for the system is less than 0.95 

days for tidal volume to equal mid tide volume and the estimated time required for 95% 

flushing is 3.2 days. 

 

The average depth of Menemsha Pond is the same as Squibnocket Pond about 4.7 feet 

and 68% is less than 2 meters which is considered Shallow (Figure 22 in a separate file).  

 

6.3  Nitrogen Loading Limits for Menemsha Pond 

Table 15 summarizes the suggested loading limits as derived from the Buzzard’s Bay 

Program’s formula.  Menemsha Pond is so well flushed that the formula indicates it can 

assimilate large amounts of nitrogen.  Nitrogen input to Menemsha comes from 

Squibnocket Pond which drains into it as well as from the watershed surrounding the 

pond. 

Table 15  Nitrogen Loading Limits for Menemsha Pond 

  Based on the Buzzard’s Bay Program Formula  In Kilograms/Year 

Embayment Reduced Quality 

Waters 

Good Quality 

Waters 

Highest Quality 

Waters 

Shallow R=3.2 days 189706 94853 31618 
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The appropriate target for the loading limit for the Menemsha Pond system is the 

Highest Quality Waters limit of 31618 kilograms of nitrogen per year. 

 

Projected Loading from Land Use Compared with Loading Limits: 

The figures used here are developed in more detail in Task 7.  This section is a summary 

only for purposes of continuity.  The primary purpose of the land use projections is to 

estimate what the nitrogen loading to each pond system may be at buildout.  When these 

loading numbers are compared with the loading limits for the system, it becomes clear 

whether loading is a concern or not.  The total loading figures for each of the three pond 

systems were prepared to provide a range based on differing assumptions about the 

growth pattern that might develop in each drainage basin. 

 

For systems where there are substantial wetlands within the drainage basin and a 

substantial amount of future growth will occur upstream of those wetlands, the 

Buzzard’s Bay Program assumes that up to 30 percent of the future nitrogen load from 

upstream development may be extracted by the wetlands.  The wetland’s ability to extract 

nitrogen from future loading is not limitless but is a probable beneficial function for the 

type of low density residential growth to be expected in these watersheds.   

 

Each of these systems has extensive wetlands in its watershed.  These include the 

wetlands west of the Menemsha Crossroads along the Mill Brook for Chilmark Pond, the 

wetlands in and around Black Brook for Squibnocket Pond and the wetlands around the 

brook that discharges into Menemsha Pond at Peases Point.  The wetland area around 

Mill Brook has some 9% (275 acres)of the watershed of Chilmark Pond upstream.  Black 

Brook has about 27 percent (367 acres) of the pond watershed upstream of the wetlands.  

In addition, another 15 percent (207 acres) is upstream of the wetlands and stream 

discharging into the northwest corner of Squibnocket.  About 172 acres or 9 percent of 

the Menemsha Pond watershed is upstream of wetlands connected to the streams flowing 

into the pond at Pease’s Point and into Nashaquitsa Pond.  These are substantial areas and 

there is a nitrogen loading reduction benefit that will accrue from these wetlands.  This 

reduction would apply to both the sewage and lawn fertilization loading.  Note that the 

reduction in nitrogen loading for sources upstream/upgradient from wetlands is now 

thought to be 50%. 

 

Chilmark Pond: 

The projected total nitrogen loading for this system ranges from 4946 to 6551 kilograms 

per year.  The wetland reduction would account for 100 to 200 kilograms per year.  The 

net loading is 4846 to 6351 kilograms.  The loading limit for Good Quality waters is 2235 

kilograms per year.  The Reduced Quality loading limit for a 25 day flushing interval is 

3802 kilograms.  The Lower Pond demonstrates some symptoms of nitrogen loading 

today with the current loading at about 3700 kilograms per year.  Steps should be taken to 

try to improve the circulation in the system by extending the lifetime of openings to the 

Atlantic. 
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Squibnocket Pond: 

The projected total nitrogen loading for this system ranges from 2295 to 4059 kilograms 

per year.  The wetland reduction applies to about 42 percent of the watershed and would 

account for 200 to 300 kilograms per year (Note this may be higher under our current 

understanding of wetland nitrogen attenuation).  The net loading projected at buildout is 

2095 to 3759 kilograms.  The loading limit for Good Quality waters is 1519 kilograms 

and for Reduced Quality waters 3037 kilograms per year with a 354 day flushing cycle.  It 

is possible that the diurnal tide observed during November 1999 may better flush the 

system allowing a higher loading limit.  Gaines (1990) estimated a 180 day flushing time 

which would call for a loading limit of 2580 kilograms per year.  It is certain that the 

flushing time (43 days) determined for the diurnal tide on a year round basis is too rapid.  

But it is possible that the annual flushing time may be better than 180 days.  Further, 

extended study of the tidal flushing phenomenon is strongly recommended to develop a 

better loading limit and evaluate options to increase flushing. 

 

Menemsha Pond: 

The projected total nitrogen loading for this system ranges from 4409 to 6531 kilograms 

per year at build out.  The wetland reduction would account for 100 to 150 kilograms per 

year.  The net loading is 4309 to 6381 kilograms.  Because Squibnocket Pond drains into 

Menemsha Pond, the loading to Squibnocket Pond should be added to the nitrogen load 

from the Menemsha Pond watershed.  The resulting combined load at buildout ranges 

from 6404 to 10140 kilograms per year.  The loading limit for Highest Quality waters is 

34103 kilograms per year.  This system will be well below its limit at buildout. 
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Task 7.1: Existing Land Use Summary:  
Spreadsheets with lot identification and projected dwelling units are available as  

Appendix A on request from the Martha’s Vineyard Commission. 

7.1.1 Regulations Applying Within the Recharge Areas in Chilmark: 

The Health Department regulations that apply provide some limitation on minimum lot 

size.  The well on a lot must be separated by 150 feet from the leaching system on the 

same or adjoining lots.  The leaching field must be 200 feet from the edge of wetlands 

associated with Squibnocket Pond and 500 feet from Squibnocket Pond itself.   

 

A leaching field must be 200 feet from a saltwater pond if it is within the Coastal District 

of Critical Planning Concern.  Within this DCPC, the leaching field must also be 300 feet 

from an adjoining leaching field.  To get these separations, about 1.5 acres are required.  

This DCPC includes land below the 10 foot contour or within 500 feet of Mean High 

Water.  A separation of 150 feet is required from other watercourses.   

 

For all separations described above, the 3 acre zoning will create large enough lot sizes.  

For smaller existing lots, variances are possible with one possible limitation being a 

requirement for 15000 square feet of upland lot area per bedroom.  Lots sized less than 

30000 square feet (0.7 acres) would only support a single bedroom dwelling. 

 

Zoning permits a single family dwelling and, for lots over 3 acres, a guest house on each 

lot limited to 800 square feet floor area.  The guest house may be connected to a common 

sewage treatment system with the main dwelling, subject to Board of Health approval, 

provided there is adequate area for sewage disposal for the guest house alone.  Guest 

houses are not allowed until the owner has ownership of the principal dwelling for 5 years 

unless the lot is 6 acres or more and the owner covenants against any subdivision of the 

parcel.   

 

Zoning districts are shown in Figure 26.  Minimum Lot sizes for the Zoning Districts are 

outlined below: 

  District I      3 acres 

  Agricultural/residential District IIA 3 acres 

  Agricultural/residential District IIB 3 acres 

  Agricultural/residential District III 3 acres 

  Agricultural/residential District IV  1.5 acres 

  Agricultural/residential District V  2.0 acres 

  Agricultural/residential District VI  3 acres 

Wetlands may be counted as part of the lot area in determining the number of lots that 

may be created by a subdivision.  In approving the subdivision of land, the Planning 

Board may require provision of open space. 

 

The size required for a pre-existing lot less than the zoning minimums to be buildable, is 

set by setbacks from the lot lines and by the Health Code.  While it is conceivable that the 

setback limits could permit dwellings on lots less than 10000 square feet, this would 

require a substantial variance from the separation required between well and leaching area 
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and the 15000 square feet per bedroom mitigation measure.  For this reason, it is 

assumed that lots less than 0.5 acres will not contribute substantially to the buildout in 

the watersheds. 

 

In addition to the Coastal DCPC, several other overlay districts apply within the  

watersheds.  The Squibnocket Pond District also affects the Health Code for all Chilmark 

lands in the watershed of this pond.  In addition to the Health code regulations in this 

DCPC cited above, the Squibnocket Pond District regulations prevent guest house 

construction on lots less than 6 acres in size. 

 

Within the designated DCPCs (Coastal District and Streams and Wetlands borders 

draining to great ponds), additions to existing dwellings of no more than 250 square feet 

are permitted provided additional sewage flow will not be generated by the addition. 

 

7.1.2 Regulations that Apply in Aquinnah: 

Both Menemsha and Squibnocket Ponds include a portion of the Town of Aquinnah 

within their watershed boundaries.   In Aquinnah, the minimum size for new lots is 2 

acres.  No more than 1 dwelling per 2 acres is allowed.  Guest houses are assumed to be 

allowed only on lots 4 acres in size or more.  Pre-existing lots down to 5000 square feet 

may be built provided requirements for well-septic separation in Title 5 can be met.  

Compact siting permits the creation of lots down to 5000 square feet in size provided an 

area equal to 2 acres per dwelling is left as open space.  This could permit clustered 

wastewater treatment to obtain better nitrogen removal by the use of advanced 

technology. Wetlands may be counted as part of the lot area in determining the number of 

lots that may be created by a subdivision.  In approving the subdivision of land, the 

Planning Board may require provision of open space.  Since their creation, no 

subdivisions have gone through the Subdivision Control regulations process so it is not 

possible to use recent approved subdivisions as a model for future growth. 

 

The minimum separation between a well and a sewage disposal system is set at 200 feet.  

A distance of 150 feet (200 feet for saltwater) is required between septic and wetland.  In 

addition, 200 feet separation between adjoining sewage disposal systems is required.  

These regulations set the minimum buildable lot size without a requirement for a variance 

at about 1 acre.  In estimating the dwellings for buildout in all watersheds, pre-existing 

small lots down to 1 acre are included as probable.  Lots less than 1 acre are included as 

possible for maximum buildout down to the minimum permitted by Title 5 for a 2 

bedroom dwelling which is 0.46 acres (assumed to be 0.5 acres for tallying small 

buildable lots). 

 

Small Lots in the Watersheds: 

Lots that may require a variance from the health code were identified to assess the scale 

of this issue.  In the Menemsha Pond watershed, 54 vacant lots less than 0.5 acres were 

found.  In the Squibnocket Pond watershed, there are only 5 such lots.  In the Chilmark 

Pond watershed, there are 7.  
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Figures Used in Estimating Watershed Populations: 

Census records for Chilmark indicate that 75.7 percent of the dwellings in Town are 

seasonal.  In Aquinnah, the estimate for seasonal units is 75.1 percent of the dwellings.  

These estimates are based on the number of residences that are not occupied at the time of 

the survey. 

Assumptions used to estimate the watershed population at buildout are: 

 Aquinnah household size is 4.55 people per seasonal houses. 

 Chilmark household size is 5.15 people per seasonal house. 

 Aquinnah household size is 2.45 people per year round dwelling. 

 Chilmark household size is 2.27 people per year round dwelling. 

 Guest houses are assumed to hold 2.27 people each. 

Seasonal occupation estimates are drawn from the MV Commission Data Report while 

year round estimates are from the Census figures. 

 

7.1.3 Chilmark Pond Watershed 
Land within the recharge area of the Pond occurs in five zoning districts all within the 

Town of Chilmark.  These are District I, IIA, IIB, III and VI.  All Zoning Districts are 

Agricultural-Residential districts.  The minimum lot sizes in all districts is 3 acres.  A 

total of 667 lots were identified within the recharge area.  There are also a large number 

of lots which are intended for access or right of way only.  These are not counted as 

vacant lots.  Of the building lots, 437 had a residential structure, 230 were vacant and 17 

of those vacant lots were open space lots within a subdivision, owned by the Town or by 

some conservation agency.  This data is summarized by watershed in Table 16 below.  

Present day land use is mapped in Figure 27 at the end of the Task. 

 

In Table 16 the category “# Lots Built Now +Future” refers to existing dwellings, vacant 

lots that will be built and future subdivisions of land that will create new building lots.  

The column labeled “Acres Vacant” is a summary of the acreage in existing vacant lots 

both pre-existing undersized lots plus large lots as yet not subdivided.   

TABLE 16 Existing Lots within the Recharge Area: Chilmark Pond 

Zoning District # Lots Built 

Now 

# Lots Built 

Now + Future 

Acres 

Vacant 

# Open 

Space Lots 

Total 

Acres 

All Districts 

Upper Pond  

280 613 838 9 2075 

All Districts 

Lower Pond 

157 285 498 8 1084 

TOTALS 437 exist. 

dwellings 

898   future 

dwellings 

1336 tot. 

acres 

17 lots (315 

acres) 

3159 

acres 

 

Potential Maximum Buildout: 

The vacant lots were examined to determine how many acres could potentially be 

subdivided within each zoning district.  Vacant lots and those larger lots with an existing 

dwelling indicate areas where future growth might occur. The largest lots within each 

Zoning District that are possible candidates for subdivision in the future are summarized 

in Table 17 below.  Each lot in excess of twice the zoning minimum was examined and 
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assigned a buildout dwelling potential.  The sum of these plus small vacant lots, new lots 

created by subdivision and the existing dwellings is 898.  

 

As a check, a quick estimate of buildout can be made.  The 1148 acres of buildable, 

vacant land in large lots in Table 17 can be reduced by 10 percent for roads (40 foot right 

of way) and open space plus 75 acres to account for the 25 existing residences to yield 

966 acres to develop.  When divided by the zoning minimum of 3 acres the land 

subdivided yields 322 lots.   

 

The existing lots that are 0.5 acres or larger are assumed to be buildable.  Those between 

0.25 and 0.5 are considered to be marginal and those less than 0.25 acres are assumed not 

to be buildable.  There are 159 vacant lots less than 10 acres in size.  If these are added to 

the 322 lots from subdivisions and the 437 existing dwellings the total is 918 dwellings at 

buildout.  This agrees with the projected 898 dwellings in Table16.  

 

Should development proceed as permitted by zoning, we can expect a maximum number 

of primary dwellings in the recharge area of 898, roughly double the present day number 

of dwellings.  This is the sum of existing dwellings (437) plus 461 existing vacant lots 

and future lots created by new subdivisions.  The maximum number of guest houses is 

estimated from the number of lots over 3 acres in size.  There is a potential for 578 one or 

two bedroom guest dwellings.  It is unlikely that every qualifying lot will have a guest 

house built on it but it is possible that the larger lots and those where a second income 

from seasonal renting is necessary will eventually have a second dwelling.  For the higher 

growth scenario, 200 guest dwellings are assumed in the loading calculations.   

 

A lower growth scenario would result if a trend toward larger lot size or inclusion of  

more open space lots were to occur.  As a model for this possibility, the Peaked Hill 

Pastures and Flanders Farm subdivision proposals were examined.   Peaked Hill Pastures 

proposed 22 residential lots on a total of 141.2 acres or an average of 6.4 acres per lot.  

The Flanders Farm subdivision proposal sited 18 residential lots on 111.2 acres or 6.2 

acres per lot.  If the average lot created by future subdivision in the watershed were 6 

acres including open space and roads, when added to existing vacant small lots, the 

number of new lots would be 322.  The total buildout would include 759 dwelling units 

in the combined watershed plus an assumed 100 guest dwelling units. 

 

Chilmark Pond Watershed Population Estimate: 

When applied to the high growth estimate of 898 dwellings, 680 houses are seasonal with 

a population of 3502 and 218 are year round with 495 occupants.  For purposes of a 

nitrogen loading estimate, I assume that there will be 200 guest houses containing an 

additional 454 people.  The total watershed population peaks at an estimated 4451 people. 

 

For the low growth scenario, the population is derived by applying the same percentages 

and occupancy rates to the projected 759 primary dwellings and an assumed 100 guest 

houses.  The peak watershed population is estimated at 3606 people. 
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Annual nitrogen loading from the sewage flow from all scenarios is developed from these 

figures but also based on the number of days that the residents occupy the dwellings.  

These calculations are described in Task 7. 

 

Table 17: Future Potential Development- Lots Over 10 Acres 
Chilmark Pond Watersheds chilss3.wk4  march 2000

Portions Future Future D.U. Guest Future D.U.

Map#   Lot# Acres Built Vacant O.S. AgriculturalOther Zone Shed Local Off-island of lot Out D. U.s Low GrowthUnits Marginal

30 106.1 100.32 1 VI U 1 5.28 29 15 29

20 60 51 1 III U  10.1    

25 20.1 51 1 III U  6.63    

25 21 46.6 1 III U 1 4 2 5

26 66.1 46.4 1 III U 5 3 5

25 5 42.8 1 III U 1  14 7 15

26 101 39.3 1 VI U 1 10.1 12 7 13

24 1 36.5 1 IIB L  14 7 14

26 105 33 1 VI U   14 8 14

19 50 32.5 1 III U 1 3 2 4

17 8 31.8 1 I L 1    

26 86.1 31.66 1 III U 4 2 4

11 1 27.1 1 I L 4 2 4

23 1 27.1 1 I L 4 2 4

19 56 26.3 1 III U 4 2 4

18 50.2 25.95 1 I L  1 12 6 13

18 106 24.6 1 L 1 3 2 4

18 92 23.6 1 III U 3 1 4

20 51 20.4 1 III U 1  10 5 11

25 8 19.7 1 III U 3 1 4

20 54.3 19.4 1 III U 3 2 3

29 16.4 19.1 1 VI U  1 9 6 9

20 48 17.9 1 III U 3.9   1

25 7.2 17.5 1 III U     

25 6.7 17.32 1 6.8 III U 3 2 3

25 19 17.1 1 III U 2 1 3

25 7.7 16.4 1 III U  1.82    

19 57 16 1 III U     

24 52 15.8 1 wetland IIB L 1  1 8 5 9

26 66.2 15.1 1 III U    

19 9 14.6 1 III U    

26 65 14.4 1 III U 3 2 3

17 1 14.3 1 III L 2 1 3

20 53 13.9 1 III U  9 5 9

25 7.5 13.4 1 III U 1 9 5 9

25 7.6 13.4 1 III U 1 32.35    

17 50 13 1 I L 2 1 3

24 33 12 1 IIB L 3 2 3

19 69.2 12 1 III U   9 5 9

24 58 11.5 1 combinedw/ 179, 180IIB L 1 8 5 8

20 50 11.4 1 III U 3 2 3

25 77 11.1 1 III U 1 8 4 8

24 16 11 1 III U 1 7 4 7

18 109 10.8 1 I L 2 2 2

26 87.2 10.62 1 III U 1    

25 7.14 10.6 1 III U 1 6 4 6

17 36 10.4 1 I L 22.6    

17 54 10.3 1 I L 1 7 4 7

19 8.1 10 1 III U 1  5 3 6

30 100 10 1 combine w/ 102VI U 1 7 4 7

TOTAL 1147.97 25 25 0 0 257 143 272

OPEN SPACE

20 47.14 65 1 1 mv land bankIII U  

23 6 61 1 1 smf I L  

23 5 35.6 1 1 smf I L

30 107 34.58 1 1 town VI U  

18 12 33.6 1 1 SMF III U

19 25 32.35 1 1 smf III U  

24 138 11.5 1 1 cemetary III U

18 75.3 11.46 1 1 smf III L

TOTAL 285.09 8 8  
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7.1.4 Menemsha Pond Watershed  
Land within the recharge area of the Pond occurs in five zoning districts within the Town 

of Chilmark and primarily one District in Aquinnah.  These are District I, IIA, IIB, III and 

VI in Chilmark and the Rural-Residential District in Aquinnah.  The regulations that 

apply are spelled out for Chilmark and Aquinnah in Section 7.1.1 and 7.1.2 above. 

 

All Chilmark Zoning Districts are Agricultural-Residential districts.  Minimum lot sizes 

in all districts (except IV and V) are 3 acres.  A total of 568 lots were identified within the 

recharge area.  Of these, 373 had a structure, 195 were vacant and 21 of those vacant lots 

were open space lots within a subdivision, owned by the Town or by some conservation 

agency.  Of the 373 with structures, 3 were on land that is otherwise classed as open 

space (town restroom, boat ramp etc.).   

 

The total area of the watershed as indicated by the assessor’s records for the two towns is 

1747 acres.  This figure does not include public roads which are separate from the lot 

acreage and are calculated at 46 acres.  There are also a number of small lots with no 

acreage figure which are assumed to be unbuildable.  The total acreage is estimated at 

1793 acres. 

 

The vacant lots were examined to determine how many acres could potentially be 

subdivided within each zoning district.  Lots identified in this process are summarized in 

Table 18 below.   Present day land use is mapped in Figure 28 at the end of this Task. 

 

TABLE 18 Existing Lots within the Recharge Area: Menemsha Pond 

Zoning District # Lots Built 

Now 

# Lots Now + 

Future 

Acres 

Vacant 

# Open 

Space Lots 

Total 

Acres 

Aquinnah 34 105 326  3 478 

Chilmark 339 537 393 18 1269 

       TOTALS 373 Exist. 

Structures 

642 Future 

Dwellings 

719 21 (212 

acres) 

1747 

 

Potential Maximum Buildout: 

The vacant lots and those larger lots with a dwelling point out those areas where future 

growth might occur. The larger lots within each Zoning District that are more likely 

candidates for subdivision in the future are summarized in Table 19 below. The sites of 

potential future subdivisions are separated into vacant and those with a dwelling.  These 

lots are also potential targets for open space acquisition.  A total of 30 vacant lots greater 

than 0.25 acre and less than 1 acre were identified. 

 

An estimate of the potential number of new lots which could be built should these larger 

lots be subdivided at permissible zoning density was calculated.  Ten percent of the lot
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TABLE 19  Large Lots in Menemsha Watershed 

Map Lot Acres Built Vacant O.S. Ag. Future 

DU 

Future 

DU 6 

acres 

Guest 

DU 

Town 

26 102 10  1   1 1 1 CH 

31 11.2 11.23  1   3 2 3 CH 

33 3 13.6  1   4 2 4 CH 

3 33 14.4  1      AQ 

26 103 20  1   2 2 2 CH 

20 87 20.5  1   6 3 6 CH 

30 77&78 26  1   8 4 8 CH 

30 76 26.6  1   8 4 8 CH 

33 48 11.7 1      1 CH 

30 75 12.5 1    2 1 2 CH 

27.1 224 14.8 1    3 1 3 CH 

33 85 15.5 1    4 2 5 CH 

8 130 15.6 1    6 3 3 AQ 

8 76,78,79,84 17.8 1    7 2 4 AQ 

31 142.9 142.9 1    44 23 44 CH 

TOTAL  373.13 7 8 0 0 98 50 94  

           

Open Space          

4 63 24  1 1     AQ 

3 1 145  1 1     AQ 

  169  2 2
1 

     

1 14.1 out; 46 acres are outside watershed 
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Table 22 Large Lots in Squibnocket Watershed 

       Future Dwellings Future Dwellings  

Map # Lot# Acres Built? Vacant? O.S.? Agric. Likely Marginal Low 

Growth 

Guest Town 

9 1821 32         AQ 

9 1771 12         AQ 

9 1831 29.5         AQ 

11 3 19.1  1   9  4 4 AQ 

12 432 23  1   10  4 4 AQ 

14 13 38.6  1       AQ 

11 4 21.4  1   10  5 5 AQ 

34 1.8 26.6  1   8  4 4 AQ 

35 2 19.1  1   6  3 3 AQ 

12 60 15.1 1    6  3 3 CH 

35 39 10.3 1    1    CH 

33 47 22.9 1    6  3 3 AQ 

35 38 13.8 1    1    CH 

33 1 10.9 1    2  1 1 CH 

11 1 173 1    45  22 22 CH 

35 1.15 27.06 1       1 CH 

11 231 59.8 30    9  9 9 AQ 

TOTAL  420.86 8 6   104  49 50  

            

Open  Space           

35 1.21 10.58   1 1     CH 

35 1.34 20   1 1     CH 

35 1.18A 14.4   1 1     CH 

35 1.244 13   1 1     CH 

35 1.17 11.59   1 1     CH 

35 1.23 46.78   1 1     CH 

35 1.294 45   1 1     CH 

35 TOTAL 161.35   7 7     CH 

1 Property of the Wampanoag Tribe 

2 Another 23.5 acres outside watershed 

3 This parcel is beach and not developable 

4  Additional acreage is outside the watershed 



57 

 

area was subtracted for roads and potential open space requirements.  In Aquinnah, 

minimum lot size is 2 acres but pre-existing lots down to 5000 square feet may be built 

provided Title 5 requirements can be met.  As discussed under the Chilmark Regulations, 

it is difficult to meet setbacks under Health Code without a half acre lot.  In Chilmark, the 

minimum acreage for new lots is 3 acres in all but Districts IV(1.5 acres) and V(2 acres).  

Pre-existing lots down to 0.5 acre were considered buildable in both Towns.   

 

Should development proceed as permitted by zoning we can expect a maximum number 

of primary dwellings in the recharge area of 642.  This is the sum of existing dwellings 

(373) plus vacant lots and new lots from future subdivisions (269 combined) as in Table 

20.   There are about 256 lots large enough to have a guest house in the watershed under 

the existing regulations (projected 3 acre lots in Chilmark = 222 and 4 acre lots in 

Aquinnah = 34).  The maximum growth scenario and the maximum number of guest 

houses cannot occur together because the zoning minimum of 2 acre lot sizes in 

Aquinnah is too small for a guest house. 

 

Table 20: Future Land Use in the Menemsha Pond Watershed 
 

TOWN #Lots Built  # New Projected Total Future Lots   Acreage 

Chilmark 339   198                               537  1269 

 

Aquinnah  34     71    105    478 

  TOTALS     373   269    642       1747 

 

As with the Chilmark Pond buildout figures, 10 percent of lot area is removed prior to 

determining the number of lots that could be created by subdivision.  Pre-existing 

undersized lots are presumed buildable if they can meet the health code. 

 

Menemsha Pond Watershed Population Estimate: 

At buildout on the Chilmark side, there will be 406 seasonal and 131 year round 

dwellings in the higher growth scenario.  The population (see page 48 for details) during 

summer on the Chilmark side of the watershed will be 2387 based on rates of occupation 

spelled out for the Chilmark Pond calculation.  On the Aquinnah side, there will be 79 

seasonal and 26 year round dwellings with a total population in the watershed of 423 

people.  Total watershed peak population in primary dwellings is estimated at 2810.   

 

In the lowest growth scenario, recently approved subdivisions were examined to 

determine the average lot size including roads and open space.  In the lower growth 

scenario, the average lot sizes created in future subdivisions are assumed to average 6 

acres including open space and roadways.  In Aquinnah, access sufficient to allow 

subdivision is a problem for many lots.  For a low growth figure, existing lots under 10 

acres are assumed to result in only one dwelling.  An additional 129 dwellings are 

projected in Chilmark  and 38 additional in Aquinnah.  Total watershed buildout is 

projected at 540 primary dwelling units with a summer population of 2372 people. 
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The exact number of guest houses at buildout is difficult to estimate.  Using the 3 acre 

requirement in Chilmark and 4 acres in Aquinnah for the minimum lot size, an additional 

256 guest dwellings are possible.   

 

125 guest dwellings are assumed for the higher growth scenario and 75 for the lower 

growth scenario.  The guest dwellings population figure is assumed be equal to the year 

round household population.  This adds 298 people under the high growth scenario for a 

peak summer watershed population of 3108 people.    

 

Under the Low Growth projection, 179 guest house occupants in the 75 units bring the 

total summer peak population to an estimated 2551 people.  In addition, there is a large 

seasonal visitor influx to Menemsha Pond and the Basin both on live aboard boats and to 

the public beach. 

 

7.1.5 Squibnocket Pond Watershed 

Land within the recharge area of the Pond occurs in the zoning district VI in Chilmark as 

modified by the Squibnocket Pond DCPC and, on the Aquinnah side, the Rural 

Residential District and, for the area along the Herring Creek, the Marine-Commercial 

District.  The minimum lot size in all districts is 3 acres in Chilmark and 2 acres in 

Aquinnah.  Due to the large drainage area of streams and wetlands that are connected to 

Squibnocket Pond, the Coastal District is extensive on the Aquinnah side.   

 

A total of 292 lots were identified within the recharge area.  One lot includes the 30 

Tribal Housing Authority units.  Of these, a total of 25 lots were so small or are access 

lots and another 14 lots are part of the Wampanoag Tribal lands and are not counted in 

either the vacant or built categories.  Of the 292, 101 had a structure, 151 were vacant and 

25 of those vacant lots are open space lots within a subdivision, owned by the Town or by 

a conservation agency.   Five of these vacant lots are contiguous with a built lot and it is 

uncertain if all are buildable.  The wastewater loading from the lands held by the 

Wampanoag Tribe (30 existing units) will be estimated based on the design flow of the 

sewage treatment facility as all units are either tied in or, in the case of the Tribal 

Headquarters building, use a no discharge system (composting toilets). 

 

The vacant lots were examined to determine how many acres could potentially be 

subdivided within each zoning district.  Lots identified are separated by Town in Table 21 

below.   Present day land use is mapped in Figure 27 (separate file) at the end of this 

Task. 

 

TABLE 21 Existing Lots within the Recharge Area 

Zoning District # Lots Built # Lots Now + 

Future 

Acres 

Vacant 

# Open 

Space Lots 

Total 

Acres 

Aquinnah 76 287 375 13 865 

Chilmark 25 63 260 12 395 

TOTALS 101 350 635 25 1260 
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Note the 101 built lots are on approximately 550 acres and the 25 open space lots include 

about 203 acres. 

 

Potential Maximum Buildout: 

The vacant lots and those larger lots with a dwelling point out the areas where future 

growth might occur. The larger lots within each Zoning District that are more likely 

candidates for subdivision in the future are summarized in Table 22 below.  Some of 

these lots already have a dwelling while others do not.   

 

An estimate of the potential number of new lots which could be built should these larger 

lots be subdivided at permissible zoning density was calculated.  Ten percent of the lot 

area was subtracted for roads and wetlands for the Districts.  The maximum number of 

new dwellings created by potential new subdivisions or from construction on existing lots 

is 249.  Of these new dwellings, 9 units will be tied into the Tribal wastewater treatment 

facility. 

 

Should development proceed as permitted by zoning we can expect a maximum number 

of primary dwellings in the recharge area of 350.  This is the sum of existing dwellings 

(101) plus vacant lots and new lots from future subdivisions (249) as in Table 23.   For 

nitrogen loading calculations, 39 of these units (30 existing and 9 projected) will be tied 

into the treatment facility. 

 

The lowest expected future growth was developed as described for Menemsha Pond.  

This leads to an additional 131 dwellings in Aquinnah and 23 on the Chilmark side for a 

total of 255 dwellings at buildout.  Of these, 39 will be tied into the Tribe’s treatment 

facility. 

 

Land Use in the Squibnocket Pond Watershed: 
Present day and projected high growth scenario development is shown in Table 23. 

 

Table 23  Projected Buildout Land Use 

TOWN #Lots Built  # New Projected Total Future Lots   Acreage 

Chilmark  25   38    63  395 

 

Aquinnah  76   211    287  865 

       TOTALS  101   249    350  1260 

The buildout number is based on the assumption that 10 percent of the lot area would be 

excluded from the acreage available to subdivide to account for roads, wetlands and open 

space.  Pre-existing undersized lots are assumed to be buildable provided they meet 

health code requirements. 

 

We estimate that, on the Chilmark side, there will be 48 seasonal dwellings and 15 year 

round dwellings at build out in the high growth scenario.  The MVC Data report estimates 

5.15 people per seasonal residence and the Census shows 2.27 people per year round 
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residence on average in Chilmark.  The projected high growth summer population in 

primary dwellings will be 281 on the Chilmark side.   

 

In Aquinnah, census records indicate that 75.1 percent of the dwellings in Town are 

seasonal or 215 dwellings at build out and the rest (72) will be year round.  The MVC 

Data Report provides a population estimate for the Town that indicates that there are 4.55 

people per seasonal dwelling and the census indicates there are 2.45 per year round 

dwelling.  The summer peak population on the Aquinnah side of the watershed at 

buildout is estimated at 1154 people.  With the 281 projected for the Chilmark side of the 

watershed, the total population is 1435 people in primary units. 

 

The lower growth scenario predicts 48 future dwellings on the Chilmark side and 207 on 

the Aquinnah side.  Using the same seasonal-year round breakdown and occupants as 

above, the projected population in primary dwellings in summer is projected as 1044 

people in the primary dwellings. 

  

Within the Squibnocket Pond District, 6 acres are required for the construction of a guest 

house.  This DCPC includes all of the watershed of the Pond within the Town of 

Chilmark.   In Aquinnah, 4 acres are required for a guest house.  The total number of lots 

that qualify for guest houses (before any subdivision of land) is 47.  In both towns, the 

projected maximum number of lots that would qualify for guest houses after subdivision 

is 83.  In season, they would hold an additional 114 to 201 residents at the average year 

round population figure for each guest dwelling.  However, the maximum number of 

guest houses cannot occur if the highest growth scenario occurs because the lot sizes are 

smaller than the minimum required for guest houses in both towns.  For this reason, the 

total projected watershed population is estimated to range between 1245 and 1549 

residents during the summer peak. 
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7.1.6 Summary of Projected Watershed Population 

The range of possible housing density and the expected peak population figures were 

derived in the preceding section.  They are summarized in Table 24.  The final buildout 

figure is unknown but will likely be within the range of figures defined by the low and 

high projections barring changes in zoning which either further limit growth or increase 

housing density.  Further limits on growth in Chilmark are not likely to come from zoning 

changes as 3 acres is the limit beyond which the snob zoning issue becomes problematic.  

It is possible that Aquinnah might move to 3 acre zoning but this event is covered by the 

low growth projection. 

 

Table 24   Summary Watershed Population Figures – Peak Season 

Pond Town Main 

Dwelling    

# units in ( ) 

Guest 

Dwelling 

High 

Growth 

Total 

Low 

Growth 

Total 

Menemsha Chilmark 2383 (537) 95  (42) 2482  

 Aquinnah 423 (105) 203  (83) 626  

 Chilmark  2082 (468) 57  (25)  2139 

 Aquinnah  290  (72) 122  (50)   412 

 TOTAL   3108 2551 
Squibnocket Chilmark 281 (63) 39 (17) 320  

 Aquinnah 1154 (287) 162 (66) 1316  

 Chilmark 212 (48)  23 (10)  235 

 Aquinnah 832  (207) 91 (37)  923 

 TOTAL   1636 1158 

Chilmark 

Pond 

Chilmark 3997  (898) 454 (200) 4451  

 Chilmark 3379   (759) 227  (100)  3606 

 TOTAL   4451 3606 

NOTE: In addition, during the summer season there will be visitors adding to the short term 

population in year round homes.  While not included here, these are estimated to equal the year 

round population figure for a 25 day period each year.  As the time frame when the visitors arrive 

cannot be predicted, they are not included in this peak population estimate. 
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8.1: Nitrogen Loading Calculations – Introduction 

Nitrogen is a naturally occurring gas in the atmosphere comprising some 78 percent of the 

air we breathe.  As a gas, it is not soluble in water.  It reaches water resources by 

conversion in the atmosphere to nitrate by lightning, by conversion from the air by 

nitrogen fixing bacteria and, once it is in vegetation, by way of the food chain waste cycle 

or by burning fossil fuels. 

 

This means there are natural as well as man made sources of nitrogen which are soluble 

and can reach surface water resources.  The sources which we have some control over 

include: 

 acid rain 

 fertilizers 

 sewage effluent 

 road runoff 

Acid rain is a national level issue over which we, at the local level, can only exert 

influence by the legislative process.  It can be a large percentage of the nitrogen load 

particularly for ponds with large surface areas to intercept the rainfall and small 

watersheds which may limit other sources such as septic systems.   

 

This leaves sewage, runoff and both farm and landscape fertilizer application as the main 

focus of any effort to reduce the loading to our coastal ponds.  In the sections which 

follow, loading from acid rain, sewage, runoff and from fertilizers are estimated to 

assemble a nitrogen loading estimate at buildout within the watershed.  This figure is then 

compared with the nitrogen loading limit as estimated by the formula prepared by the 

Buzzard’s Bay Program.  This formula takes into account the characteristics of the water 

body including its area, depth and tidal flushing as well as the desired water quality goal 

for the water resource. 

 

Nitrogen loading from all sources is summarized in Table 32 while methodology is 

discussed in detail in the sections which follow. 

 

Phosphorus is also an important nutrient for the growth of phytoplankton and aquatic 

plants.  Addition of phosphorus to a water resource, particularly fresh water, can 

stimulate excess plant growth.  In coastal ponds, it is usually not the limiting nutrient.  In 

addition, the methodology for determining appropriate phosphorus loading limits has not 

been developed for marine waters.  For these reasons, phosphorus loading calculations 

are not emphasized here but are limited to Appendix B. 
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Task 8.2: Rainfall as a Source of Nitrogen Loading    

 

Acid rain is a source of nitrogen to the recharge area and more importantly to the Ponds 

by direct precipitation on the surface of the pond.  There is no high quality acid rain data 

available for the Vineyard specifically so we rely on the quality of rainfall being a 

regional phenomenon.  The variables which are not calibrated for the Towns but rather 

for the region include: the volume of recharge and the amount of nitrogen in the recharge. 

 

Precipitation and Recharge: 

The average annual precipitation as recorded in Edgartown was 46.94 inches from 1951 

to 1998 (New England Climatic Service- Climatological Summary).  The portion of this 

rainfall reaching the water table is not precisely known but estimations made for the 

vicinity are listed in Table 25 below. 

 

Table 25:  Annual Recharge in Inches 

Source Location Recharge

USGS, 1980 Vineyard 22.2 

Leblanc, et al '86 Cape Cod west 22.2 

Leblanc et  al '86 Cape Cod east 18 

Delaney et al '72 Truro 18.3 

Leblanc 1982 Otis AFB 21 

C. C.Comm '92 Falmouth 21  
Note: A recharge rate of 28.7 inches is the accepted rate for outwash sand watersheds.  

This rate would increase the recharge from the outwash portion of the watershed only. 

 

Using a figure of 22.2 inches of recharge per year in the Chilmark Ponds watershed (3173 

acre recharge area) yields an annual average recharge of just over 1.9 billion gallons or 

7.24 million cubic meters.  This figure would approximate the annual discharge from the 

groundwater into the Pond.  For Squibnocket Pond with its 1303 acre watershed, the 

figures are 0.8 billion gallons or 2.97 million cubic meters.  The Menemsha Pond 

watershed (1856 acres) discharges 1.12 billion gallons or 4.24 million cubic meters. 

 

Road runoff discharges into stream crossings that lead to the ponds.  These streams  

include Mill Brook and Fulling Mill which flow into Chilmark Upper Pond, Black Brook 

and Witch Brook flowing into Squibnocket Pond and the Herring Creek which, 

depending on the tide will flow to Squibnocket or Menemsha Pond.  

 

Nitrogen Content of Precipitation: 

Acid rain contains nitrogen as inorganic and organic compounds.  Rain falling on the 

uplands contributes some of its nitrogen content into the vegetative cycle and the portion 

reaching the groundwater is certainly less than that contained in the precipitation itself.  

The recharge water quality is modified by the decay and growth cycles that carry on in the 

soil.  The source of nitrogen entering the groundwater from natural areas is probably a 

mix of acid rainfall and release from natural soil cycles.   
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One way to estimate the quantity of nitrogen entering the system as “background”  

concentration is to examine the quality of water in areas that are as yet undeveloped.  Of 

5559 groundwater samples analyzed by the Barnstable County Laboratory, twenty five 

percent contained less than 0.05 milligrams per liter of nitrate nitrogen.  Many of the low 

concentration nitrate samples came from wells in undeveloped areas.  This suggested that 

the rainfall nitrogen content and the organic cycle nitrogen was converted to nitrate and 

that this figure is the natural background level.   

 

Rain falling directly on the Pond introduces all of its nitrogen into the nutrient cycle.  The 

larger the pond, the greater the annual nitrogen load from acid rain.  Large ponds with 

small watersheds will often have their nitrogen loading dominated by acid rain barring 

unusually large loads from other sources.  Estimates of nitrogen concentration in rainfall 

vary widely as summarized in Table 26. 

 

Table 26    Nitrogen Content of Rain in Milligrams/Liter 

Reference Location FormLoading

Gay &Melching '95 Mass DIN 0.27 

Risley et al '94 Quabbin DIN 0.4 

IEP 1987 Yarmouth TN 0.74 

Flipse et al 1984 Long IslandTN 0.87 

Loehr, 1974 Lit. ReviewTN 0.73 to 1.27

Howes et al 1995 Nantucket DIN 0.46 

Buttermilk Bay 1991 Wareham DIN 0.3  
DIN = Dissolved Inorganic Nitrogen  TN = Total Nitrogen 
Paerl (1993) discussed the importance of atmospheric nitrogen deposition to coastal 

eutrophication and estimated this source of nitrogen at 10 to 50 percent of the annual 

external nitrogen load.  He reported a range of annual deposition for the eastern U. S. 

from North Carolina up to Maine at 25 to 37 millimoles per square meter per year.  This 

translates to about 0.3 milligrams per liter of rain.  This amounts to direct deposits on a 

790 acre pond (Menemsha-Stonewall complex) of  1120 to 1658 kilograms per year.   

 

Nixon et al (1995) cited a study which found annual nitrogen deposition into Narragansett 

Bay averaging 91 millimoles/m
2
/year and ranging from 73 to 110 (about 0.87 to 1.31 

milligrams per liter of rain).  These figures include organic nitrogen as well as dry 

deposition of nitrogen gases and particulates.  Using his lower end figures we get an 

annual deposition of 3270 kilograms per year on the Menemsha Pond complex.   

 

Costa et al (1999) estimated annual deposition to Buzzard’s Bay at about 0.7 milligrams 

per liter (7.9 kilos per hectare) including wet and dry sources of inorganic nitrogen.  This 

figure was derived from the National Atmospheric Deposition Programs figure for 

inorganic nitrogen (doubled to account for dry deposition).  The National Atmospheric 

Deposition Program indicates an average annual deposition of inorganic nitrogen at 

Provincetown at 3.66 kilograms per hectare which translates to 0.31 milligrams per liter 

(assumed annual rainfall of 46.94 inches). 
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The inorganic portion of the nitrogen in rainfall is undoubtedly a source of this nutrient 

for phytoplankton.  More complex sources of nitrogen such as organic molecules or 

particulates will require energy input from the environment or the organism to break 

down the source to more fundamental, readily usable forms of nitrogen.  This takes time 

and these complex sources are more likely to exit the pond system or to be buried in the 

case of particulates before they have an impact on phytoplankton populations.  Seitzinger 

and Sanders (1999) found that the biologically active portion of the dissolved organic 

nitrogen in rainwater was about 45 to 75 percent.   

 

Selected Rainfall Loading: 

For the low projection, I use an annual rainfall of 46.94 inches and concentration of 0.3 

mg/l in rain falling directly on the ponds. I believe the more likely loading is that used for 

the high projection which is an acid rain content of 0.7 milligrams per liter.  This figure is 

close to the figure used by the Buzzard’s Bay Program and similar to Nixon’s figure for 

dissolved inorganic and organic nitrogen.  It is also close to what could be derived from 

the National Deposition Program if we assume that organic nitrogen in rain equals 

inorganic but that only 75 percent is biologically active. 

 

Note the Massachusetts Estuaries Project has selected a nitrogen content of 1.06 

milligrams per liter based on literature search for the area.  This would result in a 50% 

increase in the annual load from precipitation shown in parentheses in Table 27. 

 

 The resulting total annual direct nitrogen loads are as in Table 27.  If the recharging rain 

or natural cycle release load (so called background nitrogen) is added, the totals increase. 

These figures bracket the low end of Nixon’s estimates, Paerl’s figure and many of the 

references cited in Table 26 above.  The higher figure being a more conservative one will 

be used in the final nitrogen loading estimates. 

 

TABLE 27       Acid Rain Nitrogen Loading in kilograms 

 Area 

Meters^2 

Volume of 

rain 

Concen.  

N in mg/l 

Direct Fall 

Loading 

Ground- 

water 

source 

Total 

Hydro. 

Cycle 

Rain 
Squibnocket 2415761 2809530 0.3 870 149 1019 

   0.7 2030 

(3045) 

149 2179 

(3194) 
Menemsha 3176413 3694168 0.3 1142 211 1353 

   0.7 2665 

(3998) 

211 2876 

(4209) 
Chilmark 

Ponds 
723166 841042 0.3 252 362 614 

   0.7 589 (884) 362 951 

(1246) 
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Task 8.3 :  Projected Nutrients from On-Lot Wastewater: 

Nitrogen is the most mobile nutrient that is expected to be introduced from recharge 

area development.  A literature review indicates that nitrogen concentration in raw 

sewage ranges from 20 to 100 mg/l (milligrams per liter).  In a properly functioning 

system, 30 to 60 percent of this nitrogen is removed (Andreoli et al, 1979).  Table 28, 

modified from The Buttermilk Bay Project (Horsley, Witten, Hegemann, Inc. 1991) 

indicates the range of nitrogen concentrations in the leaching area or in the 

groundwater immediately below the leach area. 

 

Table 28 Total Nitrogen Concentrations in Leaching Field Effluent mg/l 

milligrams/liter 

SOURCE Concentration mg/l SOURCE mg/l

Bouma et al 1972 30 Ellis 1982 34 

Walker et al 1973 40 Canter &Knox 1986 40 

Dudley & Stevenson'73 14 Nelson et al 1988 34 

Magdoff 1974 31 Andreoli et al 1979 38.2 

Magdoff 1974 41 SuffolkCty.Health '83 34.7 

Reneau 1977 23 

Brown & Assoc. 1980 37 Average 33.1  
 

Kroeger (1998) estimated that 66 percent of the nitrogen in wastewater was removed 

by the septic system, the soils and while in transit to Green Pond, Cape Cod.  This 

estimate was based on groundwater sampling compared to loading estimates within 

the recharge areas.  Applied to our range of 20 to 100 milligrams per liter in the 

original wastewater, we arrive at a range of 7 to 34 milligrams per liter for the pond 

loading calculation.  Note that the MEP has selected 35 milligrams per liter with a 

25% attenuation leading to a loading to the pond of 26.25 milligrams per liter. 

 

Flow through a fringing marsh such as occurs around a large portion of the north 

shore of the Lower Chilmark Pond may be a major sink (removal) for nitrogen in 

groundwater.  Portnoy et al (1998) found that this potential was circumvented by high 

velocity seeps which carried a large portion of the total groundwater seepage.  

Without documentation by thermal infrared aerial survey to determine where the 

groundwater seeps are in the Chilmark Ponds, a conservative approach is suggested. 

Both Menemsha and Squibnocket Ponds have extensive wetlands within their 

watersheds which may also remove nitrogen from groundwater en route to the pond.  

However, the presence of fringing marshes around these two ponds is highly variable.  

For example, there is very little marsh along the west side of Menemsha Pond but 

substantial amounts around Nashaquitsa and along parts of the east side.  Because of 

this variability and the potential for nitrogen in groundwater to bypass the marsh 

sediment as seeps, no removal of wastewater and fertilizer nitrogen is assumed to 

occur in the fringing marsh. 

 

The Buttermilk Bay Project selected a value of 40 mg/l as a conservative yet 

defensible value.  For our calculations, I have selected a value of 35 mg/l as the 
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nitrogen concentration in wastewater effluent reaching the groundwater from septic 

systems.  This figure is intended to characterize the wastewater after any plant uptake 

in the leaching field and evaporative losses occur.  The volume of wastewater in 

which this concentration of nitrogen is found determines the total load going to the 

system on an annual basis.  We have selected a daily per capita water use of 60 

gallons and a 20 percent evaporation loss figure to arrive at 48 gallons (181.7 liters) 

per capita per day infiltrating from the septic leaching system.  Evaporation actually 

acts to concentrate the nitrogen in the remaining liquid effluent so the assumed 

effluent concentration leaving the leaching pipe is somewhat lower than 35 mg/l. 

 

This assumption of 35 milligrams per liter and 48 gallons per person per day yields an 

annual per person nitrogen release that is very close to 2.32 kilograms per person per 

year.  This figure is at the low end of a range of estimates that extends up to 4.24 

kilograms (EPA, 1997).  This figure provides a per capita nitrogen load estimate 

from the on lot sewage source that is toward the low end of the range of figures 

used. 

 

Population Estimates: MVC Data Report 

Population estimates within each watershed are derived in Sections 7.1.3, 7.1.4 and 7.1.5.  

These estimates are based on the occupation figures from the Census (year round rates) 

and from the MV Commissions Data Report (summer rates).  For purposes of 

summarizing, the Census indicates an average of 2.27 people per year round dwelling in 

Chilmark and 2.45 people per dwelling in Aquinnah.  The MVC Data Report indicates 

there are 5.15 people per summer dwelling in Chilmark and 4.55 people per summer 

dwelling in Aquinnah.   

 

The number of people in the watershed and the number of days in residence will 

determine the annual nitrogen load from wastewater.  For this purpose, we assume that, in 

seasonal homes, the summer occupation rates apply for a 75 day season which is followed 

by 30 days of occupation at the year round rate.  The 30 days are meant to account for the 

increasing use of summer houses in the shoulder seasons.  The year round dwellings are 

assumed to hold the number of people indicated by the Census for 365 days.  In addition, 

we assume that there are visitors in year round dwellings equal to the year round Census 

figure for 25 days per year per dwelling.  In other words, for 25 days of the year the 

population in a year round dwelling is twice what the Census indicates.  Guest houses 

(both seasonal use and year round use) are presumed to house the Census figure 

population for the Town where they are situated.   

 

Other Household Population Estimates: 

A study of the Tisbury Great Pond Watershed (Saunders Associates, 1989) estimated 

summer house occupancy at 6 people per dwelling.  A survey in Oak Bluffs ( Planning 

Board Master Plan Survey) with over 400 responses found an average of 4.77 people per 

dwelling in the seasonal dwellings.  The demographics in Oak Bluffs, with 88 percent of 

the homes in Town seasonally occupied, are different than Chilmark, however this 

number is a hard number which falls between the 4.55 and 5.15 estimates.  It seems likely 



68 

 

that seasonal dwellings would house a greater number of residents than year round 

dwellings over the course of a summer season. 
 

Averaging the total summer population across all houses, the Tisbury Great Pond study 

indicates an average of 4.42.  In Yarmouth, IEP (1988) figures averaged about 3.0 people 

per residence during summer based on 2.73 bedrooms per dwelling.  With Yarmouth's  

estimated 5 percent seasonal dwellings, this lower number makes sense.  On Nantucket, 

Howes et al (1997) used figures which imply an average summer occupation rate of 2.68 

people per dwelling. 
 

Projected Growth and Resulting Nitrogen Loads From Septic Systems: 

Projections are made for low and high growth scenarios.  The actual buildout land use 

remains to be seen and the caveat found at the end of this Section must be taken into 

account. 

 

As calculated in Table 16 of Task 7.1, the expected maximum number of primary 

dwellings permitted under zoning in the recharge area of the Chilmark Ponds is 898.   In 

addition, there is a potential for a large number of guest dwellings in the watershed.  For 

purposes of nitrogen loading calculations, we assume that the maximum number of guest 

dwellings will be 200.  It is assumed that 75.7 percent (151) of these are occupied 

seasonally and the rest on a year round basis.  All guest dwellings will be occupied at the 

year round rate. The Low Growth Scenario assumes there will be 759 primary dwellings 

and 100 guest houses (76 seasonal and 24 year round). 

 

In the Menemsha watershed, Table 18 projects 642 primary dwellings and 125 guest 

houses at maximum growth.  The Low Growth projection is for 540 primary dwellings 

and 75 guest dwellings.  The same seasonal and year round breakdown of guest houses is 

applied as was used for Chilmark Pond.  In Aquinnah the guest house breakdown is based 

on 75.1 percent of all dwellings in Town being seasonal housing with residents equal to 

the Census figure for year round dwellings (2.45 people on average). 

 

In the Squibnocket Pond watershed, the High Growth projection is for 350 primary 

dwellings (Table 21) and 83 guest dwellings.  The Low Growth projection is for 255 

primary dwelling units and 47 guest houses.  For nitrogen loading calculations, at 

buildout, 39 of these units will be connected to the Tribal wastewater treatment facility 

and their nitrogen loading will be processed through the plant.  Guest house projections 

are based on a requirement for 6 acres minimum on the Chilmark side of the Pond and, on 

the Aquinnah side, 4 acres minimum.   

Assumptions include: 

 75.7 % of houses in Chilmark are summer only with 5.15 people for 75 

days and 24.3 %  are year round with 2.27 people for 365 days 

 75.1 % of the houses in Aquinnah are seasonal with 4.55 people on 

average and 24.9 % are year round with 2.45 people on average  
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 The same percentages of the total guest houses are occupied year 

round at the Census figure for 365 days. Seasonal guest houses are 

occupied by the Census figure for 75 days 

 summer primary houses are occupied with 2.27 people in Chilmark 

and 2.45 people in Aquinnah for 30 days during the shoulder season 

 year round primary houses have 2.27 guests for 25 days in summer 

 

Present Day Sewage Flow and Nitrogen Load From Septic Systems 

By multiplying the number of people by the number of days in occupation by sewage 

flow per capita (48 GPD) a total effluent volume in gallons per year is calculated as 

follows: 

 Pond   Growth Scenario Flow (gallons/year) Load (kg/yr. 

 Chilmark Pond  High   27.28  million  3613 (2710
1
) 

    Low   21.93 million  2906 (2179
1
) 

 Menemsha  High   19.29 “   “  2690*(1917
1
) 

    Low   15.71 “    “  2216*(1561
1
)  

 Squibnocket  High    9.62 “    “  1440**(956
1
) 

    Low     6.51   “    “   980** (647
1
) 

  * Includes 134 kilograms from Menemsha Village sources  

 ** Includes load from Tribal Wastewater Treatment Plant 

1 Loads calculated based on a final attenuated nitrogen concentration of 26.25 milligrams per liter 

 

These loading figures differ slightly from those in the Table 32 spreadsheet because these 

take into account the varying household populations in the two towns.  The spreadsheet 

figures are modified to reflect the sewage loading figures above. 

 

The nitrogen concentration in the effluent from the septic systems is estimated at 35 

milligrams per liter.   With advanced nitrogen systems, this loading can nearly be cut in 

half by producing an effluent with about 19 milligrams of nitrogen per liter. 

 

Menemsha Village includes two substantial sources of nitrogen loading that would 

exceed the formula for residential nitrogen loading.  These include a 130 seat restaurant 

open about 5 months per year and public restrooms and showers.  There are also several 

take out snack bars which do not offer restroom facilities.  Total annual nitrogen loading 

from the restaurant is estimated at 109 kilograms based on 35 gallons per day per seat 

wastewater flow.  The snack bar sources are estimated to add another 11 kilograms. Total 

annual nitrogen loading from these “concentrated” sources is 120 kilograms. 

 

Public shower usage data was provided by the Chilmark Board of Health.  The receipts 

imply 5000 minutes of use during the 1999 summer and 11290 minutes in summer 2000.  

At 3 gallons per minute, the annual water use is estimated at 15,000 to 35,000 gallons per 

year for showers.  Most (83 to 88%) of the shower use occurred in July and August and 

averaged an estimated 500 gallons per day during the summer of 2000.  The restroom 

facilities include six toilets.  Menemsha Village has a popular public beach and is a 

picturesque harbor drawing large numbers of visitors during the peak season.  I estimate 

during the peak 60 day season, an average daily use from the toilets of 1000 gallons per 
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day.  Total annual flow is estimated at 1500 gallons per day for 60 days, 750 gallons per 

day for another 60 days and 250 gallons per day for 60 days.  Total nitrogen loading at a 

wastewater concentration of 25 milligrams per liter is 14 kilograms per year. 

 

Table 32 tabulates the projected wastewater flow based on the occupation rates and 

sewage flow per capita as described above.  The calculation for Squibnocket Pond 

includes the loading from the Wampanoag Tribe’s wastewater facility.  This treatment 

plant is a Rotating Biological Contact (RBC) system with an anoxic unit with methanol 

added to remove nitrogen.  The facility is designed for a maximum daily flow of 16000 

gallons.  From September 1998 through August 1999, the plant averaged 2700 gallons per 

day with a range from 1536 to 5460 gallons per day.  The plant has a consistent record of 

excellent nitrogen removal.  The average Total Nitrogen concentration for the 1999 

calendar year was 3.31 milligrams per liter.  

 

The Low Growth Scenario assumes effluent flow at the facility at current levels of about 

1 million gallons per year adding 12 kilograms of nitrogen per year to the system.  The 

High Growth Scenario projects an increase in sewage flow to the design capacity of the 

plant or 5.84 million gallons per year adding 73 kilograms of nitrogen per year.  The 

nitrogen concentrations in the treated sewage effluent and the resulting loading to the 

pond are assumed to reflect current treatment levels.  Even if the high loading were 

doubled, the loading would still be less than 10 percent of the total nitrogen loading from 

other man made sources in the watershed. 

 

 

Demographics Caveat: 
One of the fundamentals to these projections is the assumption that the current 

seasonal and year round proportions of the population will remain constant.  Year 

round homes clearly produce larger amounts of nitrogen by about a factor of two.  If, 

due to the aging of the population or the ability to conduct work via the Internet, 

greater numbers of people take up residence on a year round or even a three-season 

basis, then the projected nitrogen loading could increase dramatically.  For these 

reasons, although loading from the Low Projection is seen as the most likely scenario, 

the High Growth Scenario should be considered as a real potential in making decisions 

about reducing future loading if necessary. 

 

If occupation moves to year round use, nitrogen loading from sewage effluent will 

increase by about 50 percent over the High Growth estimate. 
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TASK 8.4 : Nutrients from Lawn and Farm Fertilizers 
Lawns: 

Standard recommendations for lawn fertilizer are 3 pounds (1.36 kilos) of actual 

nitrogen per 1000 square feet per year.  Standard assumptions for nitrogen loading use 

6500 square feet of lawn area per lot to estimate nitrogen from this source.  Horsley et 

al (1991) reviewed the literature on nitrogen fertilizer lost via leaching from turf and 

reported a range from zero to 81 percent of the applied nitrogen.  They selected a loss 

rate of 30 percent for the Buttermilk Bay Project.  The actual amount leached depends 

on the type of fertilizer used (quick release versus timed release), the quantity applied 

and the irrigation practices or rainfall events that occur after the fertilizer is applied.   

A leaching loss rate of 25 percent was selected as a conservative figure for this study.   

 

In Edgartown, a total of 34 lawns were examined on lots situated away from the 

shore.  Lawn condition and expected fertilizer application breakdown for these lawns 

is detailed in Table 29.  Average lawn size surveyed was only 2700 square feet.  

These low application rate figures are used to estimate the lowest expected input from 

turf in the watersheds of all three ponds. 

 

TABLE 29  LAWN SIZE & PROBABLE FERTILIZER APPLICATION 

RATES—As in Edgartown Great Pond Watershed 

CONDITION     #/1000 sq. ft.   %      Kg. of N 
Good 3 8.8 1.36 

Ave. + 5 14.7 0.91 

Ave. 6 17.6 0.45 

Poor 13 38.2 0 

None 7 20.6 0  
 
A similar examination of the lawns in the Chilmark Pond watershed was made using 

aerial photography both black and white and infrared.  Of 145 lots examined in the 

Chilmark Pond watershed, 46 (32 percent) showed signs of being fertilized at regular 

intervals. The maintained area found for the fertilized lawns was substantially larger 

than found in Edgartown, averaging 16000 square feet.  Lawns of this size and 

estimated condition are estimated to receive 2 pounds of nitrogen per 1000 square feet 

for a total of 32 pounds total for the average lawn. 

 

Another 43 or 30 percent, may receive irregular fertilization.  These lawn areas 

average nearly 22000 square feet.  For purposes of estimating nitrogen loading, I 

assume an annual application of 1 pound of nitrogen per 1000 square feet to half of 

the area or 11000 square feet and no treatment for the remaining 11000 square feet. 

The remaining 56 of the lots examined (39 percent) are probably mowed but not 

fertilized.  No nitrogen loading is assumed from these fields. 
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Future Lawn Loads: 

At build out the additional lawns will add proportionally more nitrogen to the system.  

Table 30 summarizes the applied totals when 32 percent of the total dwellings have 

16000 square feet of turf receiving 2 pounds of nitrogen per 1000 square feet.  The 

turf area estimated to receive 1 pound of nitrogen per year is 30 percent of the total 

houses with an average turf area of 11000 square feet.  The remaining 38 percent of 

dwellings have minimal lawns or turf that is not fertilized.  Of the total application, 25 

percent is assumed to reach the groundwater. 

 

Table 30  Estimated Annual Nitrogen Applications to Lawns - pounds 

Pond Tot. 

D.U. 

# of 

treated 

lawn 

@2#/year 

Tot.  N 

Applied 

# of 

treated 

lawns 

@1#/year 

Tot. 

N 
Applied 

Tot. 

N to 

all 
lawns 

Chilmark 

Pond             

   Low 

759 240 7680 225 2475 10155 

   High 898 285 9120 266 2926 12046 

Menemsha       

     Low 
540 171 5472 160 1764 7236 

     High 642 203 6496 190 2090 8586 
Squibnocke

t 

    Low 

255 80 2560 73 803 3363 

   High 350 107 3424 100 1100 4524 
CHP= Chilmark Pond watershed   MEN= Menemsha Pond Watershed  SQB= Squibnocket Pond Watershed  
 

Chilmark Pond Watershed:  Under the low growth scenario there will be a total 759 

residences of which 100 will be large enough to have a guest house.  The annual 

loading at 25 percent of the total applied is 2539 pounds or 1151 kilograms of 

nitrogen. 

 

Under the high growth scenario, a total of 898 dwellings will produce an annual 

nitrogen application of 12046 pounds of which 3012 pounds or 1366 kilograms will 

reach the groundwater. 

 

Menemsha Pond: Under the low growth scenario there will be a total 540 residences.  

The projected nitrogen load will be 1809 pounds or 820 kilos to the groundwater. 

 

Under the high growth scenario with 642 residences, a total load of 2147 pounds or 

973 kilos will be released to the groundwater. 

 

Squibnocket Pond Watershed: Under the low growth scenario there will be a total 

255 residences.  The projected nitrogen load will be 841 pounds or 381 kilos to the 

groundwater.  Under the high growth loading from 350 residences will yield an 

annual total of 1131 pounds or 513 kilograms of nitrogen to the groundwater. 
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There is a considerable uncertainty in these projected figures but they present an 

incentive to encourage homeowners to reduce the scale of the manicured lawn and 

take advantage of the many low maintenance grasses that are currently available. 

On the other hand, should aesthetic practices change toward a more "mainland" 

approach to landscaping, lawns could become a significant loading factor.  

Application of nitrogen at recommended rates could double the total nitrogen loading 

from lawns. 

 

Farms: 

Farms currently comprise approximately 145 acres in the watershed of Chilmark 

Pond.  There are no active farms found in the other watersheds.  Of the total around 

Chilmark Pond, approximately 6 acres are in row crops, 134 acres in hay/pasture and 

6 acres fallow (see Table 31).  Recommended annual agronomic nitrogen application 

rates are 18 kilograms per acre for grass hay and pasture and up to 68 kilograms (150 

pounds) per acre for row crops.  Legume hay should not receive any nitrogen while 

the legumes are 40 percent or more of the crop.  Nitrogen fertilizer leaching losses for 

hayland should exceed those seen on lawns as the fertilizer is not slow release and 

often is applied in one application.  Losses are assumed to be 33 percent for hay and 

pasture for these reasons.    

 

Table 31 

Farms Within the Chilmark Pond Watershed 

Farm Locus    Size (acres) Type   Watershed 

CH State Road/ Fenner  3.5  Livestock/pasture LOWER 

CH Quansoo Rd./Hancock  5.5  Fallow   LOWER 

CH Meetinghouse @State  1.5  Livestock/pasture LOWER 

CH State Rd./Allen Farm  40  Livestock Pasture UPPER 

CH State Rd./Allen Farm  10  Pasture   UPPER 

CH State Rd./Allen Farm  10  Hay/pasture  UPPER 

CH Tabor House/Flanders  25  Livestock/Pasture UPPER 

CH Middle Rd.   25  Hay/pasture  UPPER 

CH South Rd. near Gude   3  Hay   UPPER 

CH Middle Rd./Scott   6  Organic Veg  UPPER 

CH Menemsha Cross/Thorpe  4  Livestock/Pasture UPPER 

CH N. Road/Flanders Bliss  12  Hay/Pasture   UPPER 

   

Fertilizers applied to row crops are typically not slow release and are applied to tilled 

ground presenting greater opportunity for leaching losses than from grassland.   Best 

uptake of nitrogen occurs with regular side dressing which is commonly practiced.  

For these reasons a 40 percent leaching loss is assumed for row crop acreage for 

conventional fertilization.    

 

The total acreage devoted to row crops in the Chilmark Pond watershed is 6 acres.  These 

crops are managed as an uncertified organic crop.  While, nitrogen can be over applied 

and become a threat to groundwater from organic operations too, the sources of nitrogen 
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tend to be slow release which will maximize the potential for nitrogen to be taken up by 

the crops.  Organic row crops receive nitrogen in a form where microbial breakdown is 

required to release 50 percent or more of the applied nitrogen.  This requirement releases 

some of the nitrogen a year or more after the application is made.  Over time, when 

annual applications are made, the accumulated slow release nitrogen can build up and 

cause nitrogen loss to the groundwater.  Despite this potential, the leaching loss from 

organically fertilized row crops is assumed to average 25 percent instead of 40 percent. 

 

The total acreage in hay is 50 all within the Chilmark Pond watershed.  Of this total, the 

10 acres at the Allen Farm are infrequently fertilized through an organic program as an 

adjunct to nitrogen fixing legumes in the crop. 

 

Often pastures receive minimal fertilizer applications and the droppings from the 

animals may be used to supplement or replace chemical fertilizer applications.  For 

purposes of developing a low loading estimate: 

 

 It is assumed that recommended pasture fertilizer applications are applied to only 

about half the acreage.  Total pasture land is estimated at 84 acres. The 

recommended annual nitrogen application to hay and pasture is 40 pounds of 

nitrogen per acre.   If 45 acres are fertilized, then 1800 pounds of nitrogen are 

applied annually with 450 leaching to the groundwater. 

 

 It is further assumed that about 75 percent of the hay/pasture is in legume hay 

and receives no nitrogen. I assume that 15 acres are conventionally fertilized with 

40 pounds of nitrogen applied per year.  The total annual nitrogen application is 

600 pounds with 150 pounds reaching the groundwater.   

 

 Finally, I assume that the row crops average 34.1 kilograms (75 pounds) per acre.  

On the 6 acres, an annual application of 450 pounds is expected with 25 percent 

lost (organic production) to the groundwater or 113 pounds.   

          

The total annual nitrogen loading to the Chilmark Pond system from agricultural 

operations is estimated at 713 pounds or 323 kilograms. 

 

For the high loading scenario, total leaching loss of nitrogen is based on the 

recommended agronomic application rates.   

 

 I assume that about half of the hay is in legume at any one time and receives no       

nitrogen. The 25 acres that are fertilized would receive 1000 pounds applied nitrogen 

per year and 250 pounds would leach into the groundwater. 

 All pasture land is assumed to receive recommended applications.   This figure is 84 

acres of land receiving 3360 pounds of nitrogen per year. Leaching losses (840 

pounds) are as outlined above.   
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 Using the application rates (68 kilograms on row crops) and assumptions outlined 

above, an estimated 900 pounds are applied annually of which 225 pounds or 102  

kilograms per year is lost to the groundwater. 

 

The total annual nitrogen loading under the high loading scenario from farms is 1315 

pounds or 596 kilograms. 

 

Both lawns and farms have a large potential variation in their contribution to the 

nitrogen loading from the recharge area.  This presents both an opportunity and a 

concern that they could substantially increase.  Limitations to the lawn source is 

difficult if not impossible to enforce and requires on-going effort to shape the public 

perception of what is acceptable and appropriate.  This effort should be directed at 

both minimizing the size of managed lawn and the selection of appropriate water 

insoluble (slow release) nitrogen fertilizers.  The area in native meadow is not a 

nitrogen loading issue and should be encouraged as a means for developing open 

vistas without nutrient loading impacts. 

 

Farming operations are designed to make the operator’s income as opposed to the 

aesthetics of having a large lawn.  Management practices can be shaped by what has 

potential to reduce input costs.  Possibilities include the use of nitrogen soil testing prior 

to side dressing the crop as a means to reduce applied nitrogen.  This approach has been 

shown to reduce average nitrogen applications by about 25 percent for sweet corn.  A 

source of safe, well prepared compost at reasonable prices would also allow reductions in 

applied fertilizers.  As soil quality improves, better retention of applied synthetic 

fertilizers should follow. 
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TABLE 32  October 2000 no3tot.wk4

Nitrogen  Loading: Aquinnah & Chilmark Ponds YEAR ROUND SEASONAL Septic Lawns Acid Rain Runoff Farmland Total Corrected

Watershed Type of D.U. # Dwellings People/du Flow/person #Units Yr. rnd. Flow Total Flow # Units Seas. Flow/personFlow Total Flow Total N/yr  Loading Load*

HIGH INPUT SCENARIOS Gal/yr. Liters/yr. Gal/yr. Liters/yr. kilos kilos kilos kilos kilos kilos

Chilmark Pond Max Prime Units 898 5.15 48 218 8669947.2 32859099.89 1408570131

  2.27 48 0 0 0 680 48 14829984 56205639.36  

Max Guest 200 2.27 48 49 1948749.6 7385760.984 151 48 1233972 4676753.88 2130883763

       'TOTALS 1098 267 10618696.8 40244860.87 831 16063956 60882393.24 3539453894 3539.454 1366 951 24.1 596 6476.554 6551

Menemsha Max Prime Units 642 5.15 48 157 6243952.8 23664581.11 991802189.3

  2.27 48 0 0 0 485 48 10577268 40087845.72  

 Max Guest 125 2.27 48 31 1232882.4 4672624.296 94 48 768168 2911356.72 1504972085  

       'TOTALS 767 188 7476835.2 28337205.41 579 11345436 42999202.44 2496774275 2630.774 973 2876 10.4 0 6490.174 6549

Village Loading 134

Squibnocket Max Prime Units 311 5.15 48 77 3062320.8 11606195.83 511727725.3

  2.27 48 0 0 0 234 48 5103259.2 19341352.37  

Max Guest 83 2.27 48 20 795408 3014596.32 63 48 514836 1951228.44 745240328.3

Total Units 433 97 3857728.8 14620792.15 297 5618095.2 21292580.81 1256968054 1330.008 513 2179 19.1 0 4041.108 4059

Tribal Wastewater 39 5840000 22133600 73.04

Design Flow @ 16000 GPD

LOW INPUT SCENARIOS

Chilmark Pond Max Prime Units 759 5.15 48 184 7317753.6 27734286.14 1097313060

  2.27 48 0 0 0 575 48 12540060 47526827.4  

Max Guest 100 2.27 48 24 954489.6 3617515.584 76 48 621072 2353862.88 1745824160

      TOTALS 859 208 8272243.2 31351801.73 651 13161132 49880690.28 2843137220 2843.137 1151 614 24.1 323 4955.237 5015

Menemsha Max Prime Units 540 5.15 48 135 5369004 20348525.16 807158164.7

  2.27 48 0 0 0 405 48 8832564 33475417.56  

 Max Guest 75 2.27 48 18 715867.2 2713136.688 57 48 465804 1765397.16 1233428515

     'TOTALS 615 153 6084871.2 23061661.85 462 9298368 35240814.72 2040586680 2174.587 820 1353 10.4 0 4357.987 4405

Village Loading 134

Squibnocket Max Prime Units 216 5.15 48 54 2147601.6 8139410.064 342910331.4

  2.27 48 0 0 0 162 48 3533025.6 13390167.02  

Max Guest 47 2.27 48 11 437474.4 1658027.976 36 48 294192 1114987.68 507680414.6

       TOTALS 302 65 2585076 9797438.04 198 3827217.6 14505154.7 850590746 863.8207 381 1019 19.1 0 2282.921 2295
Tribal Wastewater 39 981980 3721704.2 13.23

Note: Visitors to year round dwellings (assumed to be equal to the year round resident population for 25 days) and breakdown of population figures for Aquinnah versus Chilmark

are included in the spreadsheet as Corrected Load.  Figures quoted in text include this number.  
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Task 9.1: Nutrient Reduction Techniques and Feasibility 

This project has identified four sources of nitrogen within the recharge area of the Great 

Pond.  These sources include acid rain, on-lot sewage disposal, road runoff and crop 

fertilization- both lawns and agricultural crops.  At the present time, the Chilmark landfill 

is not considered as a likely contributor to Chilmark Pond and, in fact, is probably in the 

watershed of the Tiasquam system flowing to Tisbury Great Pond.   The Aquinnah 

landfill is a small source situated in the Squibnocket Pond watershed.  As both are in 

process of being capped (completed in the case of Aquinnah), they will be greatly reduced 

as future sources and are not considered as a part of the projected loading to these ponds.  

In addition to these external sources, there is an as yet undetermined but substantial 

cycling of nutrients from the bottom deposits into the pond waters. 

 

The sources of nitrogen at buildout are summarized in Table 32.  Present day estimates of 

nitrogen loading are summarized below in Table 33.  A comparison of the present day 

loading to the projected high growth loading indicates an increase of 75 percent to 

Chilmark Pond, 56 percent to Squibnocket Pond and 34 percent to Menemsha Pond. 

For Chilmark Pond, the loading rates resulting from wetland attenuation are estimated 

and highlighted.  Approximately 64% of the residences and 92% of the farms are in the 

Upper Pond watershed where 50% attenuation may occur.  The resulting overall 

attenuated nitrogen load is 26% less than the unattenuated load.   Similar reductions are 

likely to occur in the Squibnocket and Menemsha watersheds. 

Table 33  Estimated Nitrogen Loading Breakdown in Kilograms—Current 
POND Septic Acid Rain Lawns Farms Runoff TOTAL 

Chilmark 1517 951 671 556 24 3719 

attenuated 1031  456 301  2763 

Menemsha 1424

* 

2876 573 0 10 4883 

       

Squibnocket 255** 2179 144 0 19 2597 
*Includes loading from restaurant and public restrooms in Menemsha Village          

**Includes Tribal Wastewater Treatment Facility 

 

ATMOSPHERIC SOURCES: 

Acid Rain Nitrogen: A Substantial Source with Little Potential for Local Change 

Acid rain, as it is both an interstate as well as an in-state problem is best addressed on the 

national level through the reduction of stack emissions and auto exhaust.  On the 

Vineyard, air pollution is occasionally evident through injury of such sensitive crops as 

white pine and green beans.  In most instances this results from intact low quality air 

parcels reaching the Island from sources in New York, New Jersey and the Ohio valley.  

Certainly we should lend our support to the continued improvement in auto exhaust 

standards and to the upgrading of industrial air pollution sources.  Due to the early stage 

of build out in all watersheds and the large portion of open land in the recharge area, 

atmospheric sources are a large percent of current total nitrogen loading, particularly for 

ponds with large surface areas.  The total loading from acid rain varies with the size of 

the pond because the vast majority of the nitrogen in the annual 46.9 inches of rain is 
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added by direct rainfall to the ponds.  So a large pond like Menemsha Pond has an annual 

loading between 1353 and 2876 kilograms per year while a small pond like Chilmark 

ranges from 614 to 951 kilograms.  A large pond like Squibnocket Pond with a small 

watershed may have a nitrogen load that is dominated by acid rain unless there is another 

unusually large source in the watershed. 

 

The derivation of these figures is detailed in Task 8.  Acid rain and the deposition of 

pollutant particulates (dry deposition) will contribute between 12 and 15 percent of the 

projected nitrogen loading to Chilmark Pond at build out (See Task 7).  For Menemsha 

Pond, the percentage ranges from 31 to 44 percent.  Acid rain will deliver between 44 and 

54 percent of the nitrogen loading to Squibnocket Pond at build out.  There is some hope 

that this source will be reduced over time with increased smokestack and auto exhaust 

regulatory activities. 

 

LAND SIDE SOURCES: 

 

Landscape Nitrogen: A Limited Source Today but Possibly a Moderate Source in 

the Future without Public Education and Cooperation 

The typical practices associated with suburban lawn care are surprisingly limited within 

the watershed.  Lawns are large in area in the Chilmark Pond watershed (average of 

16000 square feet).   However, most of the larger turf areas are probably maintained with 

a minimal level of fertilization.  Lawns are projected to make up 10 to 25 percent of the 

future loading for all ponds.  The standards used in the Commonwealth's Computer 

Model (Version 1.0)  are 5000 square feet and three pounds of actual nitrogen applied per 

1000 square feet of lawn.  At this time, lawns in the recharge areas are probably much 

less fertilized than the model.  It is possible that further reductions in treatment level can 

be obtained.  The size of the grassed area is not important unless it is fertilized. 

 

The focus should be directed toward public education on appropriate selection of 

fertilizers with water insoluble nitrogen (slow release) to minimize leaching losses.  In 

addition, the benefits of the use of naturalized landscaping should be heavily stressed.  

Savings of time, money and environmental impact can be gained where native grasses 

and shrubs are used to augment the property's grounds without a large, maintenance 

demanding lawn and extensive plantings.  The public should be encouraged to compost 

their kitchen wastes and garbage disposals should not be allowed as they only add to the 

nitrogen output of septic systems.  Use of wood chip ground cover will actually absorb 

nitrogen in the breakdown of the wood cellulose.  Appropriate sources of this information 

include the Martha's Vineyard Garden Club and the UMass Extension. 

 

In addition, the size of the actively managed landscape could be limited throughout the 

pond recharge area as it is for the Squibnocket Ponds District.  While difficult to enforce, 

it does serve an educational purpose at a minimum and, for most of the public, will be 

sufficient guidance to limit the size of their managed landscapes.  A suggested target of  

2500 to 3000 square feet of fertilized turf is appropriate.  This should not restrict the area 

seeded to native grasses, forbs, naturalized wildflowers and low shrubs which would not 
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be fertilized or treated with any pesticides.  In fact, these native plantings should be 

encouraged through public education.  If we can hold the line against conversion of lawns 

to the scale and fertilization practices implied in the Commonwealth’s Model, it will be 

an important limitation of future nitrogen loading. 

 

Actions Suggested:  

 Develop guidance for low maintenance landscaping to be handed out with building 

permits, conservation commission decisions and planning board approvals.   

 Consider restricting managed turf in the Squibnocket Pond District. 

 

Farm Nitrogen: A Limited Source Today with Potential for Some Reduction 

Farm fertilizers are a smaller source of nitrogen within the recharge area for the Chilmark 

Pond watershed only ranging from 6 to 9 percent of the projected nitrogen loading.  

Today, the primary crops which are regularly fertilized are pasture and hay land. 

Traditionally pasture is not frequently fertilized.   

 

Common agronomic recommendations call for no nitrogen application for fields (pasture 

and hay) containing one third or more legume.  This is recommended because the legume 

fixes nitrogen from the air and applied nitrogen only increases the growth of grasses 

which run out the legumes.  This practice is widely known and followed by local farmers.  

Continued provision of current information relating to this practice by both the Natural 

Resource Conservation Service (NRCS) and UMass Extension are necessary to keep this 

practice in place.  This is a no-cost source of nitrogen reduction. 

 

Application of nitrogen based on soil test is the easiest way to reduce nitrogen 

applications to row crops.  Savings will vary from farm to farm depending on soil organic 

matter content and past fertilization practices.  Soil nitrogen tests are available at the 

UMass Soil Lab with interpretation and recommendation from Regional Vegetable 

Specialists. While row crops are not a substantial acreage, this approach is not widely 

followed at this time and should be encouraged.  It is estimated that a 25  percent 

reduction in applied nitrogen can be gained on row crops where this practice is followed.  

The cost of the soil test and time to collect the sample is typically more than offset by 

savings of fertilizer.  This testing program is most suited to row crops and will only have 

a minor application in the watershed. 

 

The use of split applications of fertilizers allows less leaching loss by providing the 

nitrogen as it is needed instead of all being applied at planting.  This practice is widely 

followed.  While this practice takes time, it is also a potential money saver for farmers 

and should be encouraged both on that basis and as an environmental benefit. 

Use of organic matter as a soil amendment and a source of nitrogen has limited potential 

for further application in the recharge area as the primary crops grown are grasses and 

legumes rather than row crops.  Beetlebung Farm prepares a compost pile annually.  This 

material is applied to fields farmed within the recharge area.  Organic matter is a slow 

release source of limited amounts of nitrogen.  The NRCS calculates that approximately 
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50 percent of the nitrogen in applied manure is available to the crop the first year.  The 

second year, 50 percent of the remaining nitrogen is available and so on in an 

exponentially decreasing curve.  The nitrogen in applied compost is probably available in 

a similar fashion.  Soil testing on an annual basis will credit nitrogen in the organic matter 

fraction and so reduce the applied fertilizer. Composting has great potential to be 

increased through private enterprise or by the Refuse District to develop a composting 

program to bring in organic matter from a larger area and make the product available to 

farms and landscapers on a low cost basis. 

 

Actions Suggested:  

 Farms which border streams draining to the pond or the pond itself should inspect 

the edges of these waters to assure that direct runoff is diverted into heavily vegetated 

buffers for filtration and removal of soil particles, manure and nutrients.   

 Riparian buffers should be maintained along the edges of fields bordering water 

resources unless a limited area for watering stock is required. 

 Limits on livestock access to Chilmark Pond and streams draining to it are suggested.  

Natural Resource Conservation Service is appropriate to assist. 

On Lot Septic System Nitrogen: The Largest Man Made Source Today and 

Tomorrow with Potential for Large Reductions    Septic system leachate makes up the 

greatest projected source of locally generated nitrogen in the recharge area by far 

comprising 35 to 60 percent of the future loading.  The projected percentages are: 

 Chilmark Pond—54 to 57 percent 

 Menemsha Pond—40 to 49 percent 

 Squibnocket Pond—33 to 38 percent 

In our calculations, we have kept our projections on the conservative side for this source 

and further reduction of this source will only come from actual nitrogen elimination of 

the waste stream source (short of zoning changes to reduce density).  This can be 

accomplished by two approaches which can be applied independently or together. 

 Reduce nitrogen in the septic effluent through the use of advanced on-lot treatment. 

 Reduce nitrogen by collecting sewage from selected areas and treating it in advanced 

package treatment plants to reduce the net introduced nitrogen from 35 mg/L to less 

than 10 mg/L.  Development clusters lend themselves to this approach. 

 

There are a number of advanced treatment septic systems available for use as 

replacements for the conventional septic system.  Nitrogen reductions in the range of 25 

to 50 percent (some up to 90%) can be obtained from these systems.  They typically 

require an additional structure and pumping capability and carry an added cost for these 

items.  In some cases, a reduction in leaching area is allowed with some cost savings.  

There is a seasonal start up delay period during which the effluent contains higher 

nitrogen levels which reduces the success of some of these systems for strongly seasonal 

homes. 
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A program to encourage their use through tax incentives, density incentives to developers 

or low/no interest loans is the best scenario. The Chilmark health department has been 

supportive of the use of nitrogen removing technology.  It is important to expand their 

use, to gather data on the quality of the effluent and to demonstrate their capability such 

that the second home owner who can probably afford it will insist on these systems to be 

environmentally friendly.  Increased use should bring the prices for these systems down 

and the performance level up.  However, if this is not workable, it may be necessary to 

require their use to meet the loading limits of Chilmark, and possibly, Squibnocket 

Ponds.  This is typically done through the Health Code. 

 

The discussion which follows is taken partly from the Barnstable County Health  

Department's Compendium of Information on Alternative Systems (Rask, 1998). 

 

Recirculating Sand Filters: This system has a septic tank, pump chamber sand filter and 

leaching area.  Denitrification is enhanced by returning about 80 percent of the filtered 

effluent back to the pump chamber.  Biological Oxygen Demand was reduced by 90 

percent and nitrogen by 32 percent after passing through the sand filter in 21 samples  

analyzed by the Barnstable County Health Department.  The system costs about $5000 

above the cost of a conventional septic system. 

 

Peat Filter Septic System:  This system operates in a similar arrangement as the RSF.  

Instead of a sand filter, a peat filter is provided.  A removal of over 90 percent BOD and 

about 40 percent of the nitrogen is possible.  Peat has a tremendous cation exchange 

capacity which allows it to bond positively charged particles in the effluent including 

ammonium, metals, pesticides and other organic molecules.  The system costs about 2000 

to 3000 dollars more than a conventional septic system. 

 

RUCK System:  In this system the gray-water (bath & sink) is separated from the back-

water (toilet and kitchen sink) with separate plumbing to separate septic tanks.  The back-

water is nitrified in the RUCK filter and then returned to the gray-water septic tank where 

it undergoes denitrification.  The finished effluent has a nitrogen content of about 19 

mg/L (about 40 to 50% reduction).  Higher levels of nitrogen removal may be possible.  

The system costs about 7000 to 9000 dollars more than a conventional septic system. 

 

Trickling Filters:  The effluent is trickled over a media of plastic structures between the 

septic tank and the leaching field.  The effluent is treated by nitrifying bacteria growing 

on the media.  The effluent then goes back to the anaerobic septic tank where it is 

denitrified.  Nitrogen removal ranges around 50 to 60 percent.  Costs vary from 2600 to 

4600 dollars more than a conventional septic system. 

 

Aerobic Units: The package unit aerates and settles the wastewater.  By shutting the 

aeration unit off at night, a 50 percent nitrogen reduction was obtained.  However, this 

function is still experimental.  The unit costs an additional 5600 dollars above the cost of 

a septic system. 
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Fixed Activated Sludge Treatment:  This unit is placed inside a conventional 1500 to 

2000 gallon precast septic tank.  The wastewater is aerated by an air blowing unit and 

then flows back into the settling area of the septic tank where anaerobic conditions 

prevail and denitrification can occur reducing the total nitrogen in the effluent to about 19 

mg/L (a 40 to 50 % reduction).  The FAST unit costs about 5000 dollars over the 

conventional septic system. 

 

Sequencing Batch Reactors:  The sewage is treated in batches which are alternately 

supplied and denied air.  The two systems widely available include the Amphidrome and  

the Cromaglass systems.  Both were designed to treat municipal scale wastewater and 

only now are they turning to house scale treatment.  They can be applied as package 

treatment facilities to treat a subdivision or group of houses.  Theoretically they should be 

able to reduce nitrogen in the effluent to under 10 mg/L (70 % reduction).  A 67 percent 

reduction in leaching area has been approved for the Cromaglass system.  The system 

costs about 8000 dollars more than a conventional septic system.  Maintenance at 240 

dollars per year is required. 

 

Composting Toilets:  These systems are allowed to upgrade a failed system or for new 

construction where a complying Title 5 system can be installed.  The leaching facility  

may be downsized by 60 percent as it only handles gray-water.  The solids are greatly 

reduced by the composting process however, proper handling of the composted end 

product is necessary.  The compost has about 70 percent of the nitrogen in the organic 

form greatly reducing the likelihood for leaching.  It can be used for landscaping 

purposes, landfilled or hauled by a septage hauler.  Nitrogen in the effluent passing 

through the gray-water system is only about 10 percent of conventional wastewater.  Cost 

for the composting system is about 5000 dollars.  While a septic tank is required, the size 

of the leaching area is reduced resulting in a net cost of about 4000 dollars over the 

conventional system. 

 

Effluent drip disposal:  The effluent from the septic tank is pumped through small 

diameter tubing to drip emitters that are distributed at 6 to 12 inch depth throughout a 

lawn area.  During the growing season, nitrogen uptake is significant and an overall 

nitrogen reduction of near 50% is likely.  The system does require a pump chamber and 

pump but does not require a gravel leaching area. 

 

Some of these systems may have difficulty in seasonal homes in that a start up period of 

reduced operational efficiency may occur until the biological activity begins.  If an 

average year round house produces about 5.44 kilograms of nitrogen per year, these 

systems can save 2 to 2.7 kilograms or, in the case of the composting system, about 5 

kilograms.  Over a twenty year lifetime these systems save between 40 and 54 kilograms 

of nitrogen per dwelling at costs ranging from 2600 to 8000 dollars or 48 to 200 dollars 

per kilo saved.  For the composting system, the cost per kilo is about 50 dollars.  These 

figures do not include maintenance costs which will increase the cost per kilo somewhat. 
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Actions Suggested:   

 Encourage/require use of denitrification systems for new construction on small lots 

and lots with guest dwellings which do not meet the allowed per acre nitrogen 

loading limit.    

 Devise a system to assure that tight tanks are not leaking sewage through a review of 

pump out records and on-site inspection.   

 Consider use of cluster to allow communal, denitrifying septic systems for new 

subdivisions. 

 

Growth Control Measures: 

Purchase of Title or Easement: This approach offers a method to limit loading 

which also provides other benefits: open space, population limitation, reduced demand  

for infrastructure and traffic reduction.  It is perhaps the most costly in the short term but 

becomes more economical when the benefits are examined over a longer time frame.  

Potential acquisitions are tabulated in Tables17, 19 and 22 in Task 5.  Priority properties 

to target for purchase are those with unknown owners as they will be least costly.  In 

addition to purchases, it is sensible to examine open space within subdivisions to be 

certain the title is held in a manner which will exclude reversion to buildable land in the 

future.   

 

Finally, other large properties should be investigated for easement/purchase as they will 

be less costly compared to purchase of small lots in terms of price and legal and 

administrative costs. Many of these large lots have a house on them and may already have 

covenants preventing further subdivision.  This should be investigated.  If there is 

potential for further subdivision, the owners may be approached for conservation 

easements rather than purchase.  In addition, there are a large number of lots with 

substantial acreage that might be pursued.  The Vineyard Conservation Society and 

Vineyard Open Land Foundation are sources of assistance for this approach. 

 

Zoning and Health Codes Changes: At the present time there are two 

mechanisms effecting the size of lots in the recharge area: zoning lot sizes and health 

codes.  The primary zoning limitations are for 3 acres in Chilmark and 2 acres in 

Aquinnah.  It is unlikely that the courts will tolerate any increase in zoning minimums 

beyond the 3 acre size because of the snob zoning issue. An incentive for clustering to 

secure open space and encourage a village growth pattern might be provided for those 

developments offering nitrogen removal technology such that the net output from the 

development is less than would be produced from 2 to 3 acre lots. 

 

Guest houses offer potential income through rental as well as meeting family needs.  They 

also can dramatically increase the nitrogen loading from a given lot by increasing the 

sewage flow.  The number of potential guest houses is reduced by the acreage 

requirements (3 acres in Chilmark and 4 acres in Aquinnah).  Another approach to 

limiting the impact of guest houses is through nitrogen loading limits per acre.  This 

allows some flexibility where an advanced, nitrogen removing sewage treatment is 

provided.  Until a comfortable loading limit is developed for both Squibnocket and 
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Chilmark Ponds, a means to limit the added nitrogen from guest houses is needed in these 

watersheds. 

 

Actions Suggested:  

 Consider adopting nitrogen loading limits within the watershed.   

 Encourage the use of denitrification technology to meet these targets for lots that lack 

the acreage to meet the necessary nitrogen allocation. 

 Focus land acquisition efforts for conservation in the Chilmark Pond watershed. 

 

 

POND SIDE OPTIONS: 

Pond Management Options:  These options address the receiving end rather than the 

source.  This approach is often labeled “top down” management of nutrients in that it 

calls on consumers like shellfish to reduce the effect of the added nutrients by increased 

grazing on the food web.  It is generally not as successful as reducing the nutrients at their 

source but never the less is a means to reduce impacts.  For example, the increased 

production and harvest of shellfish resources removes nutrients from the system by 

converting them first to phytoplankton and then into shellfish meats which are removed.  

As Chilmark Pond and Squibnocket Pond are now flushed, the waters are not well suited 

to scallop production but oyster culture is a possibility.  It is unlikely that a system to 

improve circulation in these Ponds can result in substantial increases in salinity necessary 

for scallop production.  In Menemsha Pond, raft, taught wire subsurface and bottom 

culture of scallops may remove nutrients while providing an income for growers.  

Improved tidal circulation to Squibnocket and Chilmark Pond will offer an opportunity to 

remove some of the nutrient load from the system. 

 

Increased Circulation: Non-Structural and Structural Options: Squibnocket and 

Chilmark Ponds 

At present, flushing is very limited to Chilmark and Squibnocket Ponds.  For Chilmark 

Pond this is because the typical inlet is open for less than one week.  This is not enough 

time to flush out the nutrients that are in the system although it typically raises the salinity 

in the Lower Pond enough for oyster culture.  Any increase in the duration of the pond 

opening in Chilmark Pond would increase flushing but the desired lifetime of an inlet is 

two to three weeks.  Timing the opening to coincide with north winds and spring tides 

and the actual cut to coincide with a falling tide should improve the depth of the initial 

inlet.  This may not translate to increased inlet lifetime as this is controlled by winds from 

the south and the wave action and sediment transport they generate.  Dredging a channel 

through the tidal flats on the inside of the Pond should help to maintain an active inlet by 

increasing the ebb outflow velocity to help keep the channel clear of shoals on the beach 

face. 

 

Chapter 203 of the Acts of 1904 enables the riparian owners on great ponds on Martha’s 

Vineyard to organize and elect three commissioners who are empowered to do whatever 

is necessary to properly drain the low lands and meadows around the great pond 
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(Friedman et al, 1976).  However, current DEP legal opinion indicates that all pond 

openings should follow the guidelines in DEP’s Coastal Pond opening policy. 

 

The option of allowing the entire system to revert to a fresh water system with periodic 

natural inlets is not considered a viable option.  This approach would lead to catastrophic 

salinity changes, periodic lack of access for anadromous fish resources as well as flooding 

of shoreline residences and sewage disposal systems. 

 

In the case of Squibnocket Pond, it appears that the pond is not consistently tidal.  Further 

in depth research is recommended to gain a better understanding of the mechanism that 

switches the tidal action on and off.  Better tidal action would probably result from 

removing the high spots in Herring Creek allowing continuous daily tidal action in 

Squibnocket Pond.  While increased tidal action would reduce nutrient impacts, higher 

salinity levels might impact other resources in the Pond.  Before deepening the Creek, an 

evaluation of herring spawning areas and the pond margin wetlands should be made to 

assure that significant ecosystems are not damaged by increased salinity. 

 

No further circulation increases are necessary in Menemsha Pond, however, periodic 

dredging to improve navigation in the inlet will improve flushing at the same time.  

 

Chilmark Pond: An exchange of about 95 percent of the water in the pond with the 

Atlantic is desirable for each opening to Chilmark Pond.  When the pond is opened and 

lowered, there is an increase of nutrients brought on by increased flow from the ground 

water into the pond and increased flow from the Upper pond to the Lower.  Paradoxically, 

influx of substantial amounts of sea water may stimulate productivity perhaps to excess.  

However, it seems likely that, with prolonged tidal action, the nutrient increase would be 

diluted with sea water with much lower nitrogen concentrations. 

 

Inlets cut through the barrier beach close due to several factors.  Weather is probably the 

primary cause of quick closure.  Wind from the south builds waves that move sediment 

into the inlet causing it to cut to the east, become more meandering and gradually close  

due to reduced force of the flowing water.  Second, the inlet cut by the initial discharge 

through the barrier beach is sized for a large volume of water. The height of the pond  

above Mean Sea Level (MSL) is a factor in the inlet forming process as it determines the 

volume of water that will discharge to the lower ocean at ebb tide.  As the pond  

lowers, the outflow slows and tidal flow begins.  At that point, the tidal flow is spread out 

in a large channel sized by the initial rush of water out of the pond such that the force of 

the tidal flow is insufficient to keep the channel clear of sand.  Sand moves from west to 

east along the beach, pushing the channel in an easterly direction until the flow becomes 

so sluggish that the inlet closes.  Arthur Gaines has found no correlation between the 

height of Edgartown Great Pond at opening and the lifetime of the opening (personal 

communication, 1998). 

 

It is desirable to keep Chilmark Pond open long enough for 95 percent (or more) 

exchange of pond water with ocean water (at least 14 days) particularly during the period 
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from late July to mid-September when water quality deteriorates.  It may be possible to 

approach this level of flushing through a non-structural approach by repeated excavation 

of the channel filling sand after the pond has regained some head over a period of about 

a month. This approach will be most successful during spring when there is higher 

volume discharge of groundwater into the pond providing a sustained source of the 

necessary head.  At a groundwater and stream discharge of about one million cubic feet 

per day in spring, a low pond (145 acres) would increase its height by one foot in 7 to 10 

days.  

 

The depth to which a channel is cut is controlled by the base level to which the channel 

drains i.e. ocean low tide level.  There is some “blow out” effect which may cut the 

channel below base level however this probably is a short term phenomenon.  If the depth 

of the outlet channel is shown to be a factor in the short life of inlets, it may be possible 

to cut a deeper channel through the beach by bringing deeper pond water closer to the 

barrier beach by dredging some of the tidal flats near the location where the opening is 

cut.  This would provide a larger volume of water close to the beach which should speed 

the initial discharge through the barrier beach cutting a more substantial opening.   

 

The delivery of Pond water to the inlet would be enhanced by clear, unobstructed flow 

that would result from deep and wide in-pond channels to the west and to the north of the 

inlet.   Internal shoals interfere with the free flow of water both within the pond and in 

and out of the inlet particularly when the Lower Pond is at a low stage.  These shoals 

include the flood tidal deltas deposited over the years by sand carried in on the flood tide 

which is not eroded on the following ebb tide.  These shoals are typically found to swing 

in an arc around the inlet site.  Excavation and removal of this sand to the outer beach 

will nourish the beaches down drift, increase the volume of water in the pond thereby 

increasing tidal flow and reduce the obstructions to the free ebb and flood tides.  In 

addition, as the barrier beach retreats to the north the distance between the south tip of 

Long Point and the beach has been reduced to a very narrow stricture.  This shoal area 

essentially cuts the Lower Pond in half in a north-south direction and severely limits 

internal circulation gyres.  An evaluation of the circulation pattern as currently limited by 

Long Point should be undertaken to determine options to reduce this obstruction but in 

the short term, some plans should be initiated to remove the tip of the point to increase 

flow in and out of the inlet and to insure that storm washover will not shut down the flow 

from the western to eastern halves of Chilmark Pond. 

 

Other approaches to prolonging the lifetime of the inlet would interfere with movement 

of sand along the shore into the inlet channel.  It may be possible to reduce wave action 

with temporary, reef-like devices which would reduce sand movement into the inlet or 

even cause scour at the inlet site.  If it is desirable to limit the dimensions of an inlet to 

keep a strong flow and lengthen the lifetime of the opening, it may be possible to confine 

the initial out rush of pond water with a structure situated on the pond side of the barrier 

beach designed to better channel the flow and minimize caving of the sidewalls.  Without 

a means to raise pond head to periodically remove filling in the channel on the beach 

face, this option has limited potential. 



87 

 

 

Carrying this further, Gaines (1996), has proposed an investigation of a temporary hard 

structure crossing the barrier beach at Edgartown Great Pond to channel the outflow in 

such a manner that the inlet can be periodically cleared of accumulated sand by closing 

the structure, building head and releasing the water.  The primary hurdle to this option is 

permitting a structure on a barrier beach.  The structure was estimated to cost about 

$150,000 for design and installation.  This structure would be placed with the 

understanding that it would be damaged and possibly destroyed by coastal storms and 

hurricanes.  It is clear that the energy applied to the south shore by storms will be 

sufficient to periodically cause severe damage and perhaps destroy such a structure.  It is 

worth watching the proposal to see if it accomplishes the desired goals. 

 

Another possibility is placement of a large conduit to move water in and out of Chilmark 

Pond.  Without a means to allow regular closing, the pond would average a lower level 

(about 3 feet lower) than today exposing large areas of mud flat because it presently 

spends considerable time at 3 to 4 feet above MSL.  Such a structure would have to 

extend offshore into deep enough water so it would not be damaged by storm waves or 

filled by longshore sand movement.  The pipe would need to be sized to pass enough 

flood water to force a tide of about ½ foot which calls for a flow of nearly 145 cubic feet 

per second over a 6 hour tide to raise a 145 acre pond by six inches.  With a 3 foot head, a 

400 foot long corrugated metal pipe flowing full 66 inches in diameter is required to carry 

150 cubic feet per second when flowing at 6 feet per second (Highway Design Manual, 

Mass. DPW,1989).  

 

The timing of the opening may be a factor in the summer water quality as the opening 

brings phosphorus into a pond which has a continuing supply of nitrogen from 

groundwater discharge.  At present, an opening is required in April to allow alewives in 

and to lower spring high water in the pond.  The summer opening usually follows in 

August.  It was following an August opening in 1993 that an intense algae bloom 

substantially lowered water quality in the Edgartown Great Pond.  Following the June 

opening in Chilmark Pond, the water quality deteriorated through August.  Some further 

study of the impact of the timing of the summer opening is necessary.  It may be desirable 

to allow the pond to become increasingly brackish over the late summer and starving the 

phytoplankton for phosphorus.  Plans are underway to delay the summer opening to 

Tisbury Great Pond in an attempt to reduce the impact of the oyster disease, dermo.  This 

trial effort may have implications for the management of Chilmark Pond.  

  

Actions Suggested:  If the consensus is that Chilmark Pond should be revived as a 

shellfish producing system, the following steps are suggested: 

 Bring deep water close to the inlet site through dredging 

 Attempt trial repeat-excavation of the opening over 1 to 2 months during 

spring  to increase tidal period to 15 days.  Assess water resource impacts 

during the process. 

 Remove shoal areas on the pond side particularly toward the tip of Long 

Point and to the north and west. 
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 Begin the planning and permitting process to remove a portion of the south tip 

of Long Point to increase circulation in the system and to prevent the Lower 

Pond from being bisected by northward retreat of the barrier beach. 

 Devise a system for better timing of openings to coincide with spring tides, 

falling tide on the ocean side and predicted winds from the north. 

 Evaluate trial delay of summer opening to Tisbury Great Pond until fall to 

assess water resource impacts.  If successful, attempt a similar program. 

 Keep records of dates and lifetimes of the inlets. 

 

Use of Herring Creek to Better Flush Squibnocket Pond: 

The Creek is currently limited by depth and length as a flushing mechanism for 

Squibnocket Pond.  The presence of shoal areas in the Creek appear to interfere with 

flood tide waters (see text for in-depth discussion).   Through removal of the “high 

spots”, it might be possible to allow a daily tidal flow sufficient to duplicate the tidal 

curve found during late October to mid-November 1999 on a continual, year round basis.  

Increased tidal flow would substantially adjust nitrogen loading limits upward and 

decrease the threat of further eutrophic response.  This option is an inexpensive means to 

allow the development pattern in the watershed to proceed as under current zoning with 

minimal water resource impacts. 

 

A preliminary survey of the elevations in the Creek shows the relationship between the 

elevations of the culvert under south road, rocky or shallow channel stretches and the 

herring catching box culverts.  A clear understanding of the elevations of each of these 

natural and man made constrictions in the channel is the first step to outlining options to 

improve flow through the Creek.  Additional tide gauge data from surveyed benchmarks 

will allow a better understanding of the relative heights and responses of the two ponds to 

tidal action. 

 

Actions Suggested:    

 A more in-depth survey of the full length of the Creek is necessary.  Identification of 

fragile ecosystems that might be impacted by better circulation should also be made. 

 Additional tide level data is needed. 

 

Use of Windmills: 

These devices have been suggested in the past as a way to bring salty water into a coastal 

great pond or to discharge pond water to lower the pond and remove nutrients from the 

system.  One attractive aspect of windmills is that there is no need for an excavated 

opening through the barrier beach.  The difficulties with windmills include the severe 

wind exposure which might lead to constant repair costs and the required volumes of 

water necessary to have some significant impact on the salinity of the pond.  This second 

limitation is the most important. 

 

The tide range in the Chilmark Pond when it is open is on the order of 3 to 6 inches. To 

add 5 inches to a low pond (145 acres) requires about 2.6 million cubic feet or 19.7 

million gallons.  If we desire to exchange this much water on a daily basis, the pumps 
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must deliver over 13000 gallons per minute.  To accomplish this, approximately 300 

windmills moving 40 gallons per minute are necessary.  This task seems beyond the 

potential of this technology to deliver at a reasonable price today. 

 

Biological Productivity: 

This approach utilizes the food web as a means of passing nutrients up from soluble form, 

to phytoplankton, to zooplankton which graze on them, to small fish or to shellfish which 

filter them out of the water column.  It is attractive because the nutrient end products are 

shellfish and fish which can be harvested and consumed as a food product or by the larger 

predators which support our sport fishery.  The Chesapeake Bay Program has estimated 

that 10 units of phytoplankton are required to produce 1 unit of zooplankton.  Again, 10 

units of zooplankton are required to produce 1unit of small fish.  Finally, 10 units of 

small fish are required to produce one unit of a top level predator like a bluefish or bass.   

In other words, 1000 units of phytoplankton are converted into 1 unit of bluefish.  It 

becomes obvious that a considerable amount of the nutrients we are interested in are 

passed up the food chain into a harvestable product. (Note: units are dimensionless and 

might be an ounce or a pound depending on the species examined). 

 

The amount of protein locked up in oyster meats ranges from 6.1 to 8.4 percent expressed 

as a percentage of the dry flesh (Walne, 1974).  One of the primary constituents of 

protein is nitrogen which is pretty consistently 16 percent of the protein weight (Millero, 

1996).  If we harvest 1000 kilograms of oyster meat (dry weight), we have harvested 

about 80 kilos of protein and 12.8 kilos of nitrogen.  Nixon et al (1995) reports that 

quahog tissue (Mercenaria mercenaria) contains about 2.7 % nitrogen on a fresh weight 

basis.  This indicates the possibility of removing 27 kilos per 1000 kilos of fresh meat 

removed if the same percentage holds for oysters.  Michael Rice (no date) estimates about 

17 kilos of nitrogen are removed for every 1000 kilos of shellfish meat harvested.  

 

The relationship is much more convoluted because the shellfish consume many times 

their body weight in phytoplankton and excrete urea and fecal pellets as they grow.  Both 

the food and the waste products contain nitrogen.  Some of the fecal pellets and soluble 

nitrogen become food for other organisms and some may be buried in the sediment.  

While older, slow growing adults may not remove nutrients from the system, young, 

rapidly growing bivalves are net removers of nutrients from estuaries (Rice).   

Aquaculture is a means of growing large numbers of shellfish and harvesting them at a 

young growth stage when they have removed maximum nutrients from the system. 

 

The system for herring is different but it seems clear that by spending part of their life in a 

coastal pond before migrating to the sea where many are consumed in the food chain they 

must remove some nitrogen from the system.  As confounding as that cycling is, it seems 

certain that the net effect of harvesting fish or shellfish is the removal of nutrients 

from the water column.  Bio-systems are subject to crashing due to disease or changes 

in light or oxygen.  As we do not know the exact quantity of nutrients that they might 

remove and, recognizing the risks that are inherent in bio-systems, this nutrient removal 

option should be implemented but not depended on as a removal strategy. 
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Two options are seen as worth further investigation as ways to lower nutrients in the pond 

system.  First, Chilmark Pond should be examined to determine the size of the 

anadromous fish population.  DMF specialists should be consulted for their 

recommendations to enhance these species.  The primary anadromous fish identified in 

Edgartown Great Pond (Skomal, 1998) is the alewife (Alosa psuedoharangus).  Mixed in 

were a limited number of Atlantic menhaden (Brevoortia tyrannus).  Establishing a new 

or larger fish run might require stocking and possibly improvements to Doctor’s Creek.  

The success of the Upper Lagoon Pond Herring Run and stocking program indicates a 

high probability of similar success in Chilmark Pond.  Squibnocket Pond has a large fish 

run but the numbers of fish should be estimated and the size and sufficiency of spawning 

grounds should be investigated.  The alewife may also produce water quality problems 

that result from the nutrients they import from the Atlantic as well as their tendency to 

consume zooplankton that are important to maintain a low phytoplankton concentration. 

 

An examination of the issues around limiting the population of cormorants may also be 

required if they are found to be significantly impacting the establishment of an alewife 

population.  Paradoxically, as a predator, cormorants are a consumer of nitrogen but one 

which leaves much of their consumption behind as droppings.  Apparently, these birds 

roost near where they are feeding (Hatch, personal comm.) so the net effect of their fish 

consumption is to convert fish proteins into organic and soluble forms of nitrogen and to 

put them back into the pond.  It is likely that geese produce a similar result. 

 

The requirements within the pond for alewives are outlined below.  These requirements 

are generally met toward the heads of the coves.  Any improvements to the tidal flushing 

of Squibnocket must be evaluated for their impact to herring spawning requirements.  

This option is a low cost, almost self-sustaining way to reduce nitrogen loading impacts 

to a limited degree. 

Alewife Requirements Chesapeake Bay Executive Council, 1989 

 Salinity  0- 6.0 ppt 

 DO   5.0 ppm 

 pH   6.5-7.8  

 Flow   tidal or stream 

 

Second, development of a shell-fishery within the Chilmark and Squibnocket Ponds 

should be thoroughly investigated along at least two lines.  The establishment of an oyster 

fishery may be possible in Chilmark Pond.  If the oyster population comes back, openings 

timed to minimize impact on phytoplankton populations could provide the salinity to get 

high quality meat to satisfy market demands.  Openings also must be timed to avoid 

flushing out the oyster larvae that are in the water column during July.  Oysters not only 

sequester nitrogen in their tissues but they deposit large amounts in their feces and 

psuedo-feces into the bottom sediment where a considerable amount of the nitrogen they 

filter from the water column is converted to gas and enters the atmosphere.  As an option, 

oysters raised in Chilmark Pond might be moved to a more saline pond such as 
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Menemsha on their way to market.  The enhancement of the existing Squibnocket oyster 

population into a fishery should also be investigated. 

 

Another, more remote possibility would be to restrict tidal exchange into one or more of 

the Chilmark Pond coves to reduce the salinity and process the nutrients in the recharging 

groundwater into oyster meat.  As the Upper Pond is the primary site where nutrients are 

introduced with the groundwater and streams, a restriction would be designed to trap 

nutrients in the west end of Chilmark Lower Pond. This portion of the pond would 

become an intensive aquaculture area to process nutrients into shellfish meat.  This 

approach will require extensive permitting, extraordinary in-pond construction and much 

more detailed evaluation before it is attempted. 

 

Oysters are susceptible to a disease found in Edgartown and Tisbury Great Ponds.  It 

appears that any oyster venture in Chilmark Pond would eventually have to deal with this 

problem.  There may be substitute species such as blue mussel, soft shell clam and 

perhaps other species of oyster more tolerant to the dermo disease that can be successfully 

grown (Crassostrea gigas-western oyster).  The blue mussel requires higher salinity than 

is currently available and may not thrive in summer water temperatures.  This option may 

be initiated after the lifetime of openings is increased enough to offer appropriate salinity 

levels.   Soft shell clams are not believed to be in Chilmark Pond and their culture has 

very limited potential focused mainly on the tidal flats at the site of the opening.  Their 

presence in Squibnocket Pond is unknown.  The western oyster is an exotic species which 

should only be imported after careful investigation.  This possibility is under study and 

debate for the Chesapeake Bay where the oyster population (virginica) once was large 

enough to filter the water in the entire Bay every 3 to 6 days.  Now, due to population 

decline, the filtration cycle requires about 325 days.   

 

Draining the Upper Pond: Much of the nutrient loading to Chilmark Pond enters 

through the Upper Pond.   The possibility of paired opening of the Upper and Lower 

Ponds as a means to divert the input of nitrogen bearing water from the Upper Pond into 

the Lower Pond is difficult to envision but may be worth some investigation.  There 

would be salinity changes and significant associated impacts brought to the eastern part of 

the Upper Pond where a potential inlet site exists.  Increased erosion due to the presence 

of two inlets may be a problem.  The lifetime of the inlet into the Lower Pond could be 

greatly reduced due to decreased flow through the inlet.  The most western part of the 

Upper Pond should be protected by a tide gate structure to exclude saline water.  The 

reduced nitrogen entering the Lower Pond may well be a good trade off but this option 

needs thorough evaluation by a hydraulic circulation model before serious consideration. 

 

Actions Suggested:   

 Conduct appropriate studies to characterize the fish, shellfish and ecological habitats 

around the perimeter of Chilmark and Squibnocket Ponds prior to any changes in 

current circulation/flushing  practices.   
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 If shellfish productivity is agreed to as a priority use of Chilmark Pond, proceed to 

enhance circulation through dredging projects.  Utilize the shellfish program and an 

enhanced herring run as nutrient removal techniques.   

 Evaluate options to increase anadromous fish population. 

 Investigate the feasibility of breaching the eastern part of the Upper Pond as a means 

of nutrient removal only as a last resort.   

 Evaluate potential impacts from salinity increase to existing ecosystems. Proceed to 

develop the shellfish program as a means of nutrient removal.   

 Enhance the herring run if feasible. 

 

Task 9.2: Nitrogen Loading Scenarios: 

We have established a range of loading limits (Task 5) and a range of growth scenarios 

(Task 7) with varying nitrogen loads resulting.  Loading projections are derived from 

growth assumptions detailed in Task 7.  The following discussion juxtaposes the loading 

associated with different levels of growth with the loading limits.  In section 9.3 ways to 

meet the loading limits are discussed in more detail.  The range of predicted loading is: 

 Chilmark Pond LOW GROWTH:   5015 kilograms/year (kg/y) 

 Growth Assumptions: Low Loading 

In this scenario, new growth is held to an additional 322 primary dwelling units 

over the present day estimate of 437 for a total of 759 dwellings.  The assumption 

is that all of the existing vacant small lots (164 lots) would be built as well as new 

subdivisions (158 lots).  Average lot sizes would be 6  acres in new subdivisions.  

It is assumed that 100 of the larger lots would also have a guest house.  It is 

assumed that lawns would continue to be treated as the present day lawns are.  

Farms are assumed to use low rates of nitrogen fertilization. Rain fall 

contributions would be at a low rate of 0.3  milligrams of nitrogen per liter of 

rain.  

 

Chilmark Pond HIGHER  GROWTH:  6551 kg/y 

 Growth Assumptions: High Loading 

Under this growth scenario, a total of 898 primary dwellings are projected with 

the larger lots having guest houses adding another 200  dwellings.  It is assumed 

that lot sizes average 3 acres.  No further conservation easements or purchases 

are assumed.   

We assume that lawns are treated as today. Farm fertilization programs are 

projected to increase to the full agronomic rate.  Acid rain loading is at the 

higher rate of 951 kilograms per year. 

 

The loading limits as recommended by the Buzzard’s Bay Program formula (See Task 5 

for detailed discussion) range from 5.2 to 10.4 kilograms per day.  On an annual basis the 

loading ranges from: 

Chilmark Pond /25 DAY Residence/Good Quality Rating: 1901 kg/year 

 Chilmark Pond/14.9 DAY Residence/Good Quality Rating: 2261 kg/year 

 Chilmark Pond /25 DAY Residence/Reduced Quality Rating: 3802 kg/year 

 



93 

 

The lowest limit of 1901 kilos per year (5.2 kilos per day) is now and has been 

historically exceeded with little indication of persistent water quality problems beyond 

those outlined in the Water Quality Assessment in Task 2.  Given the limited data to 

support this low limit and the tremendous changes within the recharge area before build 

out required to meet it, it is not considered a reasonable loading limit target at this time.   

A 14.9 day opening is within reach at this time but could not be repeated frequently 

enough to give a consistent 14.9 day average residence time over the year.  

 

Recent research has suggested a target loading limit of 30 kilograms of nitrogen per 

hectare (12.1 per acre) of pond area to maintain the health of eelgrass beds by limiting the 

growth of fouling seaweed and algae (Hauxwell, 1998).  While there are no eelgrass beds 

found within the system, it may be desirable to establish them to improve the habitat for 

fish species.  If this limit is applied to Chilmark Pond (145 to 241 acres), this rate implies 

a loading limit of 1755 to 2916 kilograms per year. These figures bracket the loading 

limits for Good Quality rated waters.  The Reduced Quality water rating carries with it a 

nitrogen limit of 3802 kilograms per year.  The Reduced Quality rating is suitable for 

shellfish production but implies periodic algae blooms.  It is the only limit that may be 

reached without extraordinary watershed loading reduction measures. 

 

Menemsha Pond LOW GROWTH:   6700 kilograms/year (kg/y) 

 Note: This loading includes the nitrogen contributed by Squibnocket Pond. 

 Growth Assumptions: Low Loading 

In this scenario, new growth is held to an additional 167 primary dwelling units 

over the present day estimate of 373.  The assumption is that all of the existing 

vacant small lots (119 lots) would be built as well as new subdivisions (48 lots) 

totaling 540 dwellings at build out.  Average lot sizes would be 6  acres in new 

subdivisions.  It is assumed that the 75 of the larger lots would also have a guest 

house.  

In addition in the Squibnocket Pond watershed, the 101 existing dwellings would 

increase by 154 primary units to a total of 255  primary dwelling units.  There 

would also be another 47 guest houses on the larger lots. 

 It is assumed that lawns would continue to be treated as the present day  

lawns are.  Rain fall contributions would be at a low rate of 0.3 milligrams of 

nitrogen per liter of rain.  

 

HIGHER  GROWTH:  10608 kg/y 

 Growth Assumptions: High Loading 

Under this growth scenario, a total of 642 primary dwellings are projected with 

the larger lots having guest houses adding another 125  dwellings.  It is assumed 

that lot sizes average 3 acres.  No further conservation easements or purchases 

are assumed.   

In the Squibnocket Pond watershed, a total of 350 primary dwellings are 

projected plus 83 guest houses. 
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We assume that lawns are treated as today. Farm fertilization programs are 

projected to increase to the full agronomic rate and rainfall adds nitrogen at a 

rate of 0.74 milligrams per liter. 

 

The loading limits as recommended by the Buzzard’s Bay Program formula (Task 5) 

range from 93 to 280 kilograms per day.  On an annual basis the loading limit ranges 

from: 

Shallow Pond /3.2 Day Residence/Good Quality Rating: 94853 kg/y 

 Shallow Pond/3.2 DAY Residence/Highest Quality Rating:31618 kg/y 

 

The lowest limit of 31618 kilos of nitrogen per year (86.6 kilos per day) is well above the 

projected maximum growth in both watersheds.  This target loading can be easily met.  

The eelgrass beds in Menemsha have shown some symptoms of reduced growth but the 

cause is uncertain at this time(Colarusso, 2000).    Recent research has suggested a target 

loading limit of 30 kilograms of nitrogen per hectare (12.1 per acre) of pond area to 

maintain the health of eelgrass beds by limiting the growth of fouling seaweed and algae 

(Hauxwell, 1998).  If applied to Menemsha Pond (790 acres), this rate implies a loading 

limit of 9486 kilograms per year.  This limit will be exceeded at buildout under the High 

Growth Scenario.   For this reason alone, growth as planned in the Town through zoning 

is a desirable limit to nitrogen loading which provides time to examine indicators of pond 

health in greater detail. 

 

Squibnocket Pond: LOW GROWTH:   2295 kilograms/year (kg/y) 

 Growth Assumptions: Low Loading 

In this scenario, new growth is held to an additional 154 primary dwelling units 

over the present day estimate of 101.  Total dwellings in the watershed at build 

out will be 255.  Average lot sizes would be 6  acres in new subdivisions.  It is 

assumed that the 47 of the larger lots would also have a guest house.  It is 

assumed that lawns would continue to be treated as the present day  

lawns are.  Farms are assumed to use low rates of nitrogen fertilization. Rain fall 

contributions would be at a low rate of 0.3 milligrams of nitrogen per liter of 

rain.  This loading estimate is somewhat less than the present day load 

estimate using the higher loading from acid rain.  This implies that the likely 

low growth buildout loading will be greater than this estimate and at least in 

the range of the present day number. 

 

HIGHER  GROWTH:  4059 kg/y 

 Growth Assumptions: High Loading 

Under this growth scenario, a total of 350 primary dwellings are projected with 

the larger lots having guest houses adding another 83  dwellings.  It is assumed 

that lot sizes average 3 acres.  No further conservation easements or purchases 

are assumed.   

We assume that lawns are treated as today. Farm fertilization programs are 

projected to increase to the full agronomic rate. 

 



95 

 

The loading limits as recommended by the Buzzard’s Bay Program formula (Task 5) 

range from  8.3 to 23.4 kilograms per day.  On an annual basis the loading ranges from: 

Shallow Pond /354 DAY Residence/Reduced Quality Rating: 3037 kg/y 

 Shallow Pond/43 DAY Residence/Good Quality Rating:  8532 kg/y 

 

The lowest limit of 3037 kilos per year (8.3 kilos per day) is approached today from the 

combined effects of acid rain (up to 84 percent of the limit) and septic effluent (about 10 

percent of the limit).  There are several indications of water quality problems under the 

present loading including phytoplankton blooms and high levels of dissolved nitrogen 

(Wilcox, 1999).   It is possible for a coastal pond system to show signs of eutrophication 

that are mainly from the natural inputs. Until the remaining uncertainties about the 

flushing of the system are clarified, this limit is a worthy target 

Recent research has suggested a target loading limit of 30 kilograms of nitrogen per 

hectare (12.1 per acre) of pond area to maintain the health of eelgrass beds by limiting the 

growth of fouling seaweed and algae (Hauxwell, 1998).  Eelgrass beds were not observed 

during the course of sampling in 1999.  If applied to Squibnocket Pond (602 acres), this 

rate implies a loading limit of 7284 kilograms per year which will be easily met even 

under the High Growth Scenario.  

  

9.3  MODIFYING LOADING PROJECTIONS TO MEET 

LIMITS: 

These scenarios are described to provide a sense of how the Towns might meet the limits 

within the range of loading that we have identified.  Each scenario requires a different 

level of management to achieve the loading limit target.  The activities to reduce nitrogen 

loading are interchangeable.  Those chosen for each loading projection are as described at 

the beginning of Task 9.2 above. 

 

Scenarios for Chilmark Pond 

1. Good Quality Waters Limits and Lowest Loads 

Under this scenario the loading limit is 1901 kilograms per year.  Even the low growth 

scenario (5015 kilos per year) cannot meet this guideline. If all sewage disposal systems 

in the watershed were converted to nitrogen removing systems with an effluent quality at 

19 milligrams of nitrogen per liter, the loading from all sources would still exceed this 

limit by over 1700 kilograms per year in the Low Growth projection.  (See Table 32 in 

Task 8 for loading projections).  In order to meet this limit with the acid rain, road runoff  

and farm sources as givens, only  940 kilograms remain for septic systems and lawn 

sources.  This implies a limit of about 188 dwellings with conventional Title 5 septic 

systems or, with advanced nitrogen removal, 346 dwellings.  There are already 437 

dwellings in the watershed.  This low growth limit is a worthy goal but cannot be 

implemented with current technology.   It implies that a high water quality goal for 

these waters is not obtainable without a major increase in flushing and that the 

lower quality limits for Reduced Quality waters should be considered. 

 

2. Reduced Quality Waters Class  Limits and Lowest Loads 
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The limits for this scenario range from 3802 to 4522 kilograms per year.  Under this 

scenario, the loading projected (kilos/y) exceeds the loading limit by 493 to 1213 

kilograms of nitrogen per year.  If all new septic systems (322 primary dwellings) were 

advanced, nitrogen removing systems, the savings would be 600 kilograms per year. 

Reduction in lawn loading by half would remove another 550 kilograms per year.  This 

scenario is a difficult one but it is workable. 

 

3.  Reduced Quality Class Waters and High Growth Loading 

To meet the Reduced Quality Class limits, a reduction in the High Growth scenario by 

over 2500 kilograms are necessary.  If the projected 461 new dwellings were all to be 

required to use advanced septic systems, a savings of 800 kilograms per year would 

result.  Reducing lawn sources by half could yield another 680 kilograms.  It is clear that, 

short of somewhat extreme methods such as package treatment for new subdivisions, the 

High Growth loading is not compatible with acceptable water quality.  This implies that 

at buildout under the High Growth scenario, unacceptable deterioration of the water 

quality in the Ponds will probably occur. 

 

Scenarios for Menemsha Pond 
The loading projections for all scenarios meet the loading limits established by the 

Buzzard’s Bay Project formula.  

 

Scenarios for Squibnocket Pond 
These loading limits are based on the Reduced Quality water quality rating which seems 

to best represent current water quality conditions in the pond. 

1. Lowest Limits and Lowest Loads 

Under this scenario the loading limit is 3037 kilograms per year to meet the Reduced 

Quality waters rating.  The low growth scenario meets this limit by 742 kilograms of 

nitrogen.  If the higher acid rain loading is factored into the low growth scenario, the 

build out load will exceed the limit by just over 400 kilograms.  This could be offset by 

reducing the size of lawns and denitrifying a small percentage of future on lot septic 

systems.  However, as we now believe, this load limit is likely reached by precipitation 

alone.  This is a workable scenario. 

 

2.  Higher Loading Limits and All Projected Loads 

This loading limit is based on the existence of a daily tide which is does not occur 

continuously at the present time.  Therefore it is still not a realistic possibility without 

further manipulation of the system.  If continuous tidal exchange can be established, the 

suggested loading limit target is 8532 kilograms per year for a Good Quality waters rating 

and all growth scenarios meet it.  Under a daily tidal flow assumption, an Reduced 

Quality waters loading limit is not suggested because, under present day loading, the 

system already has some undesirable symptoms and an increase to loading that 

approaches 10 times current loading is not a prudent step. 

 



97 

 

9.4  Suggested Method to Calculate Available Nitrogen Loading Per 

Acre: 
One way to view the potential to develop within the watershed areas is to determine what 

loading each acre could contribute such that the sum would equal the desired load limit.  

It seems straight forward enough to divide the loading limit by the total acreage in the 

watershed.   However, there are fixed sources in the watershed including acid rain, runoff 

and farm land that should be deducted before an allocation for residential loading is 

made.  These sources are somewhat offset by existing conservation lands which do not 

contribute nitrogen.  For estimating how much nitrogen is saved by conservation lands, 

the allowed loading is divided by the total watershed acreage.  This figure is then 

multiplied by the acreage of conservation lands and added to the available loading. 

 

TABLE  34  Residential Nitrogen Load Allocation in Kilograms 

Pond Limit Rain Runoff Farms/ 
Other 

Load 

left* 

Acreage Load/ac. 

Chilmark 3802 951 24 596 2573 3173 0.93 

 Conservati

on Offset 
 285 

acres 

X 1.2 kg 

per acre 

== 342   

Menemsha 31618 2876 10 134** 28598 1856 17.35 

 Conservati

on Offset 
 212 

acres 

X 17 kg 

per acre 

==3604   

Squibnocket 3037 2179 19 13*** 826 1303 0.92 

 Conservati

on Offset 
 161 

acres 

X 2.33 

kg/acre 

==375   

Note load per acre is calculated by adding the load left and the conservation add in and 

dividing by watershed acreage 

* Load Left includes the Conservation Nitrogen savings  

**Estimated Load from high flow sources in Menemsha Village inserted here. 

       ***Estimated current load from Tribal wastewater treatment facility  

 

Residential Acreage Allowed to Meet Nitrogen Load Limit: 

The average person in the course of a year will add about 2.27 kilograms of nitrogen to 

the groundwater.  In a 2.5 person house this is 5.7 kilos.  An average lawn is very difficult 

to characterize and therefore the nitrogen loading on an annual basis is approximate.  For 

Chilmark Pond the average loading from lawns is estimated at 3.35 pounds (1.52 kilos).  

The other ponds are expected to be similar.  This brings the total loading per year round 

dwelling to 6.5 to 7.5 kilograms.    However, if averaged out across both seasonal and 

year round dwellings, the loading is about 5 kilos per residence.  Resulting minimum lot 

sizes based on the present day year round-seasonal mix are as follows: 

 Chilmark Pond  5.4 acres 

 Menemsha  No Limit as per current zoning 

 Squibnocket  5.4 acres 

 

It is clear that many existing residences exceed this per acre nitrogen loading limit as 

there are many lots that are less than 5.4 acres in these watersheds.  Looking toward the 
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future, it is possible that subdivisions might follow a low density pattern with large lots 

approximating this acreage.  The 5.4 acre lot size falls within the low growth 

assumptions.  If combined with increased conservation acquisitions and easements, this 

possibility becomes more realistic. 

 

Denitrification systems can be relied on to eliminate at least one third of the nitrogen in 

the wastewater and often more than that.  Their use could bring the necessary acreage on 

average across existing and future houses to 4.1 acres in both the Chilmark Pond and the 

Squibnocket Pond watersheds. 

 

As discussed in Task 7.1.3, some recently proposed subdivisions in Chilmark had lot 

sizes which averaged over 6 acres when open space was included.  Any increase to 

zoning lot sizes exceeding 3 acres is not likely.  The best approaches are clearly to 

encourage provision of open space in subdivisions; to identify and acquire easements or 

fee title in key parcels; to minimize lawn sizes; and to encourage or require the use of 

denitrification systems. 

 

Another Strategy to Meet Loading Limits:  Transferable Nitrogen Loading Rights 

Under the loading limits, each acre in the Pond’s recharge area can contribute a portion of 

the total allowed annual loading.  Chilmark Pond exceeds the loading limit under all 

growth scenarios and Squibnocket Pond exceeds the loading limit under any growth 

pattern more intense than the Low Growth Scenario.  On the other hand, Menemsha Pond 

has a large buffer of available nitrogen loading and land located toward the north shore 

drains to Vineyard Sound.  Clearly these areas are more tolerant of nitrogen loading than 

Squibnocket and Chilmark Ponds. 

 

Through a program similar to the Transfer of Development Rights (TDR) often used to 

protect farmland, the Towns might devise a Nitrogen Loading Rights Transfer program. 

Each development proposal would be examined to determine its likely loading figure.  If 

that loading exceeds the allowed per acre rate, then the developer must purchase or 

otherwise obtain loading from other owners outside the recharge area of the pond which 

needs a reduced loading.  To work properly, the transfer must occur so that loading is 

transferred out of the watershed of the pond and into the watershed of a pond which 

can tolerate the added loading.  
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Task 9.3: Summary and Recommendations: 
These coastal salt ponds are important resources to the Towns which, in the case of 

Chilmark and Squibnocket, have had some seasonal water quality problems in the past.  It 

is clear that there should be a concerted effort to assure that poor water quality events do 

not become a frequent occurrence in these two ponds.   To get to that point will require a 

two component approach.   

 

The first component is to manage the ponds in a manner to remove nutrients from the 

water column and to flush the system at appropriate times of year that do not stimulate 

nuisance algae blooms.  It appears that this includes: prolonging openings to the ocean to 

better flush Chilmark Pond, increasing the tidal flow through Herring Creek to 

Squibnocket, increasing the fishery in both ponds and possibly timing openings to 

Chilmark Pond in spring, fall and winter to avoid creating nuisance algae blooms in late 

summer.  (Note that the late summer tidal exchange is now considered vital to water 

quality but carries the risk that a failed opening can lead to poor water quality.)  The last 

aspect of this plan requires additional research which should become the basis for 

managing the system and provide the information needed to carry out the second part of 

the plan. 

 

The second component is to assure that land use in the watersheds contributes nitrogen 

to the system at an acceptable rate.  Every acre within the recharge area carries a 

responsibility to help meet the limit.  Every acre owns a share of the acceptable loading 

figure.  Purchase of conservation lands should be seen not as an opportunity to increase 

the per acre loading rate for the remaining acreage but rather as insurance that our 

estimated loading limit will not be exceeded.   

 

This report has recommended loading limits which allow growth projections to go 

forward unhindered in the Menemsha watershed, carefully in the Squibnocket watershed 

and with some limitations in the Chilmark Pond watershed.  Some additional purchases 

of conservation easements or title are appropriate, particularly for Chilmark Pond.  In the 

Chilmark Pond watershed, average lot sizes must be larger than allowed by zoning or 

nitrogen removing technology for on lot wastewater is necessary to meet the loading 

limit.   We must keep in mind that technical limits to growth can always be overcome by 

technological solutions.  It is acceptable to use nitrogen loading to limit impacts to the 

pond but eventually the desired growth pattern should be established through zoning.  

 

The various methods to limit nitrogen loading are tabulated in the pages that follow.  

Each has some advantages and some disadvantages.  These are spelled out.  Those 

options which focus on on-lot sewage disposal and those which aim at better flushing and 

nutrient management in the pond are most important.  A Decision Matrix is provided as 

Table 35 which helps to prioritize the options for best results and ease of carrying out. 

 

Short Term Strategy:   The following items should be the initial focus with a 3 to 5 year 

time horizon to set the stage for a long term management program: 

Increase knowledge about the systems through additional field study: 
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 Chilmark Pond: fin fish and benthic invertebrate surveys, consistent 

record keeping about date and duration of openings, continued water 

quality sampling data, circulation enhancement evaluation, eradicate 

purple loosestrife, evaluate oyster fishery start up, evaluate stormwater 

discharge and potential to better treat runoff with vegetated buffer 

treatment. 

 Squibnocket Pond: fin fish and benthic invertebrate survey, aquatic 

plant survey, Herring Creek elevation survey, continued tidal cycle 

data from Squibnocket and Menemsha surveyed to a common 

benchmark, continued water quality data collection, 24 hour dissolved 

oxygen/salinity/temperature survey, continue toward an active oyster 

fishery 

 Menemsha Pond: fin fish and benthic invertebrate survey, eelgrass 

survey, continued water quality data collection, 24 hour deep basin 

dissolved oxygen/salinity/temperature survey 

Short Term Implementation Goals: 

Town Boards & Agencies: 

 Together with the Commonwealth, designate Menemsha Pond as an Outstanding 

Resource primarily for the purpose of shellfish production and marine/brackish 

habitat.  Chilmark Selectmen, Shellfish Department and DEP 

 Subdivisions meeting the acreage requirements for Chilmark Pond (5.4 acres), 

Squibnocket Pond (5.4 acres) and Menemsha (as per zoning) meet the loading limits 

that presently are appropriate for the protection of these ponds.  In the Chilmark Pond 

and Squibnocket Pond watersheds, guest houses should be considered to either 

require appropriate acreage or to be allowed with the use of nitrogen removing 

technology for both the primary and guest houses.  Both Town Planning Boards. 

 Request Division of Marine Fisheries (DMF) to carry out fin fish surveys in all three 

ponds.  Request particular attention to impacts of increasing salinity in Squibnocket 

Pond.  Request DMF to evaluate potential to enhance the herring run in Chilmark 

Pond. - both Towns Selectmen & DMF. 

 Request Natural Resource Conservation Service to examine road runoff at stream 

crossings - both Towns Selectmen. 

 Pressure Massachusetts Highways to evaluate and correct runoff problem on State 

Road at Herring Creek crossing and to evaluate Hariph’s Bridge in response to NRCS 

evaluation. Both Towns Selectmen. 

 Request NRCS to work with farms abutting coastal ponds and streams draining to 

them to improve runoff control and pollutant removal from pastures and to encourage 

continued use of legume mixes in hay and pasture - Dukes Conservation District 

and Chilmark Conservation Commission. 

 Together with the Chilmark Pond Sewers obtain appropriate permits for regular pond 

openings and provide funding to evaluate and define dredging project(s) to enhance 

circulation and flushing of Chilmark Pond.  Chilmark Selectmen, Pond Sewers and 

Chilmark Pond Association. 

 Attempt to prolong the opening lifetime for a 14 day period through repeated channel 

excavation in spring over 4 to 8 weeks. Chilmark Pond Sewers. 
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 Schedule Chilmark Pond openings for spring tides during spring/early summer, late 

fall and winter until better information clarifies the impact of late summer openings.  

Chilmark Pond Sewers 

 Shellfish Department and Selectmen consider desired uses and water resource 

quality goals appropriate for Chilmark Pond. 

 Encourage shellfish production in Menemsha and Squibnocket Ponds through a 

program of bottom or water column grants with guidance from and in cooperation 

with the MV Shellfish Group.  Both Towns Shellfish Departments and Selectmen. 

 Work with MV Shellfish Group to evaluate possible oyster fishery start up in 

Chilmark Pond.  Chilmark Shellfish Department 

 Raise annual water quality survey funds to support Wampanoag Tribe of Gay Head 

(Aquinnah) (WTGHA) in Squibnocket and Menemsha Ponds.  Suggested minimum 

budget for each pond is $10000 per year for three year period.  Both Towns. 

 Raise annual water quality survey funds for Chilmark Pond.  Suggested minimum 

budget is $10000 per year for a three year period. Chilmark Selectmen and Pond 

Sewers. 

 Consider establishment of Squibnocket Pond DCPC in Aquinnah as a means to 

implement nitrogen loading control.  Aquinnah Planning Board. 

 Seek/provide funding for a definitive evaluation of the acceptable loading of nitrogen 

to Squibnocket and Chilmark ponds based on primary production.  Both Towns. 

 Work with MV Land Bank Advisory Committee to identify and secure conservation 

lands in the watersheds of all three ponds.  As per the Open Space Plan (1995) target 

lots in Tables 17, 19 and 22 in Task 7 for acquisition or easement.  Both Towns 

Land Bank Advisory Boards. 

 Within Squibnocket and Chilmark Ponds watersheds, encourage the use of nitrogen 

removing technology possibly by a real estate tax rebate plus the acreage incentive.  

Use 33 percent nitrogen reduction in calculating nitrogen loading from these systems 

until valid study of effluent quality provides a better figure.  This technology may be 

used to reduce lot size minimums.  Both Towns Boards of Health and Selectmen. 

 Develop low maintenance landscape handout for all new homeowners.  Both Towns 

Conservation Commissions. 

Wampanoag Tribe:  

 Continue annual water quality survey in Menemsha and Squibnocket Ponds. 

 Survey Herring Creek channel to determine if channel deepening is feasible to 

improve circulation. 

 Continue with shellfish propagation plans as a means of nutrient reduction.  Work 

with MVSG on oyster fishery development in Squibnocket Pond. 

 Lobby for correction of State Road runoff problems at Herring Creek and possibly at 

Hariph’s Bridge. 

Squibnocket Pond District Advisory Committee: 

 Continue public awareness/education campaign to reduce scale of landscaping in the 

watershed. 

Martha’s Vineyard Commission: 

 Develop a public education program on denitrifying septic systems. 
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 Assist with preparation of a brochure on low maintenance landscaping. 

 Assist with identifying sources of funding support for recommended actions. 

 

Possible Sources of Financial Assistance Other than Town Meeting Appropriations: 

Coastal Pollution Remediation Program: Ideal for correcting road runoff problems.  

Requires a local match that can be in-kind. 

Section 319h Program:  This program is directed toward non-point source reduction 

implementation. 

DEM Lakes & Ponds Grant: This program funds up to $10000 with a required match 

for study of lakes or ponds aimed at developing management plans. 

  

Long Term Program: 

 For the longer term or as an alternative to the lot size requirements outlined in 

the Short Term Strategy, adopt the loading limit as revised by further research 

for new lots.  Large lots that will not be further subdivided in recharge areas 

that do not use their allowed loading may be used as credit to smaller lots.  

This must be carefully done so that overall pond loading limits are not 

exceeded and so that the individual coves are not overloaded with nitrogen 

due to concentration of small lots.  Nitrogen removing technology for sewage 

treatment would allow smaller lots.  Allow guest houses only on adequately 

sized lots. 

 As an option, devise a nitrogen transfer program to allow purchase of loading 

rights to reduce the size required for new lots particularly if availability of 

low/moderate income housing stock becomes limited.  This program should 

only be implemented after careful scrutiny of the potential to overload 

restricted coves by transferring in too much nitrogen loading to their recharge 

areas.  

 A one way transfer of development rights program to move development out 

of the recharge areas of Chilmark and Squibnocket Ponds may be used if 

necessary to move nitrogen loading to recharge areas of ponds with better 

flushing such as Menemsha Pond or the north shore.  

 Exercise extreme caution in allowing privately owned wastewater treatment 

facilities as a way to meet nitrogen loading limits.  These systems must be 

evaluated based on hydrology and a careful evaluation of loading to the pond 

system as well as the individual cove into which the system will discharge.  

Strict maintenance programs are necessary for optimal operation.   As the 

number of houses in Menemsha Village converting to year round occupation 

increases, evaluate the potential for sewage collection and treatment. 

 As indicated by further research, adopt a phosphorus buffer of 300 feet in the 

Squibnocket Pond District (if adopted) in Aquinnah or the Coastal DCPC 

where septic system leaching areas are not allowed without advanced 

treatment. 

 Consider a similar restriction within the coastal DCPC around both Upper and 

Lower Chilmark Pond. 
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 Based on pond research adjust allowed nitrogen loading and enforcement 

programs to satisfy the required annual loading limit. 

 As they are installed, implement a maintenance/inspection program for 

advanced on-lot septic systems.  Initially, this might be done in partnership 

with other Towns as a regional inspection program.  Older systems located 

within the Coastal District should be included to assure that they are in good 

condition and are properly operating. 

 Target an annual shellfish harvest from Squibnocket Pond of 2000 bushels 

removing approximately 200 kilograms of nitrogen.  

 As part of Squibnocket Pond District Advisory Committee newsletter, include 

regular articles on the need for and the means to reduce residential nitrogen 

loads.  Encourage the use of compost piles instead of garbage disposal through 

the on site wastewater disposal system. 
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       TABLE 35 

 

Advantages & Disadvantages of Management Options 

 

Recharge Area Options    Advantages     Disadvantages    

 

Sewage Treatment Plant:   Substantial nitrogen reduction possible  Cost of connection 

Service to Menemsha Village  Does not require individual system O & M  Risk of growth stimulation. 

      program as with on-lot upgrades  Lack of treatment/disposal sites 

       

Advanced On-Lot Sewage Treatment Cost borne by homeowners not Town Cost of upgrade 

     Moderate to Substantial reduction of  Requires an inspection program 

      Nitrogen Loading   Seasonal use may reduce nitrogen removal 

     Could be done as a regional program with other Towns Regressive cost impact on less  

              wealthy individuals. 

 

Landscape Nitrogen reduction  Low cost item for all    Requires public interest and support   

Only limited fertilization practiced-  Limited quantity of nitrogen saved over  

does not represent a major change in current   today’s loading from this source 

practices 

Could provide a substantial loading reduction    Not an easily enforced program 

over possible future loading 

 

Farm Nitrogen Loading   Low cost item & program is in place  Requires added management  

            Requires operator dedication and interest  

             Not easily enforced 

 Could save only small amounts of nitrogen 
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Advantages & Disadvantages of Management Options  continued 

 

Recharge Area Options    Advantages     Disadvantages    

 

Dredging Tidal Flats  (Chilmark Pond) Use spoil to nourish South Beach  Enhanced flushing may still be limited by   

       Circulation Improvement  Dredging Long Point may improve   South shore winds 

 internal circulation   Permitting 

 

Deepening Herring Creek   Probably would increase tidal exchange Salinity increase may impact some species 

 (Squibnocket)   Nitrogen loading restrictions could be Permitting 

 Circulation Improvment   eliminated 

      Possible reduction in nuisance algae and reeds 

      Relatively low cost 

South Beach Sluiceway   Allows precise control of flushing  Needs Engineering to assess feasibility 

 (Chilmark Pond)   Not a high cost item    More saltwater may cause algae blooms 

 Circulation Improvment        Possibility of annual repair costs 

            Possibility of periodic severe damage 

Edgartown has run into a permitting road 

block 

Windmills     Reduces dependency on a successful inlet Number and cost of windmills substantial 

 Circulation Improvment        Aesthetics of large number of windmills 

     Annual O & M of windmills  

 

Aquaculture     Convert nutrients into food   Diseases limit potential success 

Support shellfish industry   Production of waste products may need  

      Possibility for private industry operation  treatment strategy 

Dollars earned cycle in local economy  
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Advantages & Disadvantages of Management Options  continued 

 

Recharge Area Options    Advantages     Disadvantages    

Purchase Easement or Fee   Multiple uses allowed     Cost of purchase 

 (Conservation lands)   Multiple purposes realized    Less land available may increase 

  cost per acre  

  

Zoning Changes    Reduces density and nitrogen loading fairly  Larger lots may be less affordable 

      Lower density means lower population and  Snob zoning limit at 3 acres 

       reduces traffic and infrastructure costs Most of Chilmark is 3 acres now  

 

Health Code Changes Easily adopted through a public hearing process. Technology will eventually  

 (Denitrification systems)  Not as fixed as a zoning change because an owner meet code requirements freeing up 

       can meet requirements with technology.  more growth. 

       

Nitrogen Transfer Program   Allows growth to occur as lot owners desire yet    Requires some administration. 

       meets overall recharge area nitrogen limit. Must be designed to protect 

other sensitive ponds.   

          Regressive cost impact on less  

             wealthy individuals. 
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  DECISION  MATRIX  1= Best 5= Worst/Least 

ACTION 

 

WHO ACTS N REDUCTION 

POTENTIAL 

COST FACTOR IMPLEMENTATION 

DIFFICULTY 
PUBLIC 

ACCEPTANCE 

PRIORITY  

LEVEL 

Denitrifying Septic BOH 1 3 3 2 1 

Adopt Nitrogen 

Loading Limit/ac. 

BOH   PB  PAC 1 3  2 2 1 

Increase Lot Sizes PB  PAC 1 4 (purchase $) 3 (snob zoning if> 3 

acres) 

4 3 

Expanded DCPC PB   PAC  MVC 1 3 3 3 2.5 

Buy Open Space Cons.- Town- MVLB 1 4 2 1 2 

Limit Turf Area PB- CC -PAC 3 1 4 (enforcement?) 2 3 

Reduce Farm 

Nitrogen 

NRCS 

Farmers 

3 2 3 2 2.5 

Provide in Watershed 

Sewage Collection 

SC- BOH 1 3 for individuals           5 

for Town 

5 (existing units spread 

out) 

3  (Town) 

4 ( home owners to        

be tied in) 

4 

Nitrogen Transfer  BOH  PAC 5 3 3 2 3 

Recondition Herring 

Creek (Squibnocket) 

SD- Selectmen-TRIBE 1.5 (better flushing) 2 3 (needs further 

study/permits) 

1 2 

Increase Herring 

Population 

SD- DMF-TRIBE 4 1 1 (may not be feasible-

more study) 

1 2 

Increase Shellfish 

Harvest 

SD- MVSG-TRIBE 4 2 2   (need better 

understanding of today’s 

yield)  

1 2 

Prolong Inlet Life SD- CPA 2 1 For excavation         2 

For structure 

1 For excavation         4 

For Structure 

1 1 

Pipe for Flushing SD-CPA 3  3 5 1 3 

Dredge Tidal Flats SD-CPA-Con Com. 3 3 2 1 2 

BOH =Board of Health CC = Conservation Commission  Cons. = Conservation Organizations   CPA = Chilmark Pond Assoc.  DC = Dredge Comm.             

DMF = Division of Marine Fisheries   MVC = MV Commission   MVSG = M. V. Shellfish Group   NRCS = Natural Resource Conservation Service  PAC = Squib. Ponds 

Advisory Committee  PB = Planning Board  SC = Sewer Commission     SD = Shellfish Dept. 

 



 

Public Involvement: 
 

 

 

October 30, 2000 Squibnocket Pond District Advisory Committee Meeting 

 

August 2000  Squibnocket Pond District Advisory Committee Newsletter 

 

August 30, 2000 Meet with Aquinnah Planning, Conservation and MV Commission  

   members 

 

August 28, 2000 Squibnocket Pond District Advisory Committee Meeting 

 

July 2000  Draft Reports to Libraries and Planning, Health, Conservation and  

   Selectmen in Chilmark and Aquinnah.  Also to MV Commission 

   members and Wampanoag Tribe. 

 

June 21, 2000  Meet with Chilmark Board of Health 

 

June 7, 2000  Public Presentation Advertised in Gazette and Times  

 

April 29, 2000 Display at Earth Day celebration, MV Regional High School 

 

July 21, 1999  Meet with Chilmark Board of Health 

 

March 1, 1999 Meet with Squibnocket Pond District Advisory Committee 
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Phosphorus in the Water Column: 

Phosphorus is another major nutrient required for production of phytoplankton, algae and 

rooted macrophtyes in the marine and brackish systems.  From the ratio of inorganic 

nitrogen to orthophosphate found in the water column in the Edgartown and Tisbury 

Great Ponds, it appears that there may be time periods when phosphorus becomes 

limiting to the biological system (Wilcox, 1999).  Typically these times occur during the 

winter and spring when biological systems are operating at lower levels.  During the 

growing season (May through September)  nitrogen is consistently the limiting nutrient.  

While these ponds have differences when compared to Chilmark Pond, there are enough 

similarities to support an assumption of a similar seasonal variation in limiting nutrients. 

 

During the 1999 and 2000 growing seasons, the data collected from Chilmark Pond (both 

Upper and Lower Ponds) were nitrogen limited as indicated by the ratio of inorganic 

nitrogen to orthophosphate.  However, during the early August 1999, sampling round, 

there was excess nitrogen in the Lower Pond with nitrogen to phosphorus ratios well in 

excess of 16 to 1.  The increase in nitrogen may relate to the early June opening which 

dropped the Lower Pond by 3.5 feet.  The increased flow into the Lower Pond from the 

Upper Pond and the streams and groundwater probably added nitrogen. 

 

Average orthophosphate concentrations in the Upper Pond ranged from 1.01 to 2.09 

micromoles per liter, two to three times the average concentrations found in the Lower 

Pond.  The higher average values result from high concentrations in the July and August 

2000, sampling rounds (see Table 2 in Task 2).  Elevated phosphorus concentrations were 

not found in the Lower Pond in the 2000 sampling rounds.  I would suggest that this 

phenomenon is the result of higher than average rainfall in the June through August 

period in 2000 and lower than normal rain in the same period in 1999.  Excess 

phosphorus in the Upper Pond probably is a result of increased runoff from roads and 

bordering uplands. 

 

Data collected from Squibnocket and Menemsha during 1995 (Wilcox, 1999), indicate 

that Squibnocket varies from being nitrogen limited to being phosphorus limited.  

Menemsha Pond was found to be consistently nitrogen limited.  It appears that there is a 

close association between the tidal nature of a pond and its limiting nutrient i. e. the more 

tidal a pond system is the stronger and more persistent is the nitrogen limitation on 

growth. 

 

Phosphorus Sources: 

In a study of Edgartown Great Pond, Gaines (IN Wilcox, 1999) concluded: “Phosphorus 

inputs appear largely derived from ocean sources and is not associated with groundwater 

discharge to the pond.”  In the literature, phosphorus from groundwater sources is 

generally thought of as being a minimal contribution to nutrient loading.  In general, the 

literature indicates that phosphorus is only introduced from the land side in significant 

amounts from surface runoff and by stream discharges. 
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Sources: Street Runoff 

Phosphorus may comprise 0.01 to 0.2 percent by weight of natural soils (EPA, 1993). 

Most cropped soils have increased phosphorus content to high or very high levels due to 

past fertilizer practices (Sims, 1992).   In soils it occurs as dissolved inorganic, colloidal 

and particulate forms.  Phosphorus is strongly bonded in acidic soils to aluminum and 

iron creating an insoluble precipitate.  Native soils in the area are acid.  Phosphorus is 

also relatively insoluble in water (10 to 15 ppb).  For these reasons, it is not considered a 

mobile nutrient.  Orthophosphate (dissolved inorganic) is  the form directly available to 

algae.  Because of this tendency to bind in the soil, erosion and runoff of soil particles 

directly into water resources is the prime means of entry from agricultural, forestry and 

other disturbed sites.  The amount of phosphorus released from a site is proportional to 

the area disturbed and the nature and sufficiency of phosphorus removing treatments such 

as buffer strips and infiltration basins which bring the phosphorus discharge into contact 

with the soils which can bind it or through dense vegetation which filters out eroded 

sediment bearing phosphorus. 

 

Runoff from paved areas discharging directly to surface waters is also a potential source 

of phosphorus.  In addition to heavy metals, salt, sediment, bacteria and other pathogenic 

organisms, nutrients are carried with the rain as it washes down the streets.  Suburban 

areas generate runoff with total phosphorus concentrations of about 0.26 mg/l and 

orthophosphate about 0.12 (Schueler, 1987).  Runoff also carries dissolved inorganic 

nitrogen (0.74 mg/l) and total nitrogen (2 mg/L).   

 

The portions of the watersheds that are most likely to generate runoff that will reach the 

ponds are the roads that cross streams flowing to the ponds or portions of the pond itself.  

The amount of runoff generated is dependent on the area of the road leading up to the 

discharge point.  Many of our roads have had their discharge points relocated to release 

points that flow to vegetated borders on the margins of streams or wetlands in an attempt 

to minimize the impact on water quality. 

 

The quantity of runoff generated from a paved area is dependent on the amount and rate 

of rainfall.  Generally, about 60 to 80 percent of the rainfall events of less than 1 inch will 

generate some runoff.  The percentage increases with the total amount of rain from the 

storm.  For rainfall of 1 to 2 inches, runoff is 80 to 90 percent and for rain in excess of 2 

inches, the percentage gradually increases to 95 percent.  (All drawn from USDA Soil 

Conservation Service Field Manual). 

 

Days with 1 inch or more of total rainfall averaged 10 per year from the Edgartown data 

set (New England Climatic Service).  The majority of the annual rainfall in our area 

comes in events of less than 1 inch. In the calculations which follow, I assume that 75% 

of the annual rainfall falling on roads draining to streams will be released as runoff at the 

stream crossings.  On average, this amounts to 35.2 inches or 2.93 feet.  Table C-1 

summarizes runoff estimates for the following stream crossings.  
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The discharges of street runoff directly to the streams flowing to Chilmark Pond include, 

both branches of the Fulling Mill Brook at the South Road crossings, the unnamed stream 

flowing from the Allen Farm at the South Road crossing and the Mill Brook at road 

crossings on South Road and the Menemsha Cross Road.   

 

The South Road crossing of the channel connecting Nashaquitsa and Stonewall Ponds at 

Hariph’s Bridge has some potential for runoff discharge into Menemsha Pond.  In 

addition where South Road crosses the Herring Creek there is a likelihood of runoff 

discharge into the Creek which mostly flows to Menemsha Pond.  The developed area at 

Menemsha Basin also will contribute runoff to the harbor area. 

 

The Black Brook crossings of Moshup’s Trail and South Road are the primary sites where 

road runoff may enter the Squibnocket Pond system. 

 

Table C-1  Road Runoff Estimates for Stream Crossings in the Watersheds 

POND STREAM PAVED 

AREA feet2 

VOLUME  

feet3 X 106 

TOTAL Per 

Pond feet3
X 10

6 

Chilmark 

Pond 

Fulling Mill 89976 0.264  

 Mill Brook 55008 0.161  

          TOTAL    0.425 

Menemsha 

Pond 

Hariph’s Bridge 62496 0.183  

          TOTAL Herring Creek 47496 0.139  

    0.322 

Squibnocket 

Pond 

Black Brook @ 

Moshup’s 

25008 0.074  

 Black Brook @ 

State Road 

42504 0.125  

          TOTAL    0.199 

 

We do not have any analyses of actual runoff at these locations from which to determine 

an accurate, local loading estimate.  However, by using the figures cited above for 

nutrient concentrations in suburban runoff a good estimate of annual loading can be 

developed. 

 

CHILMARK POND  

 DIN    8.91 kilograms       

 Total Nitrogen   24.1 kilograms 

 Total Phosphorus  3.1 kilograms 

 Orthophosphate  1.4 kilograms 

 

MENEMSHA POND 

 DIN    6.75 kilograms       

 Total Nitrogen   18.2 kilograms 
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 Total Phosphorus  2.4 kilograms 

 Orthophosphate   1.1 kilograms 

SQUIBNOCKET POND 

 DIN    4.2 kilograms       

 Total Nitrogen   11.3 kilograms 

 Total Phosphorus  1.5 kilograms 

 Orthophosphate  0.68 kilograms 

 

It is clear that nitrogen additions from runoff at the road crossings are not significant 

when compared to the other sources in the watersheds.  The level of loading of nitrogen is 

less than 3 percent of the acid rain loading to Chilmark Pond and less than 1 percent for 

Menemsha and Squibnocket Ponds.  Phosphorus loading will be compared later in this 

section.  

 

Sources: Agricultural Runoff 

Agricultural operations are primarily limited to the Upper Chilmark Pond recharge area.  

The farms which abut the Pond or streams flowing to it have a somewhat greater potential 

to contribute nitrogen and phosphorus loading to the system.  These farms include the 

Allen Farm with pastures bordering the Upper Pond itself and the unnamed stream 

flowing to it.  In addition, the farm at Bliss Pond and that along Menemsha Crossroad 

near the South Road intersection are situated near Mill Brook.  These farms are animal 

operations where soil disturbance in the form of plowing is infrequent.  In fact, much of 

the pasture area at the Allen Farm was established without plowing.  Lack of soil 

disturbance greatly reduces the potential for sediment erosion and runoff carrying 

nutrients, particularly phosphorus, into the Pond. 

 

The most appropriate practice to reduce phosphorus loading from these farms is the 

provision of vegetated buffer areas between farm fields and water resources.  Vegetated 

buffers are very effective in the removal of total suspended solids from runoff.  The level 

of treatment varies with slope, soil, vegetation type, the moisture conditions before the 

runoff event and the type of pollutant.  Generally 50 to 100 feet of buffer appears to be 

effective in the removal of sediment and the retention of phosphorus (Logan et al, 1986).  

Bordering wetlands are also effective nutrient traps if their functions are not 

compromised by either sediment overload or by extreme volumes of runoff. 

 

Fertilizer applications to these farms are not believed to represent a serious water resource 

threat.  The Allen Farm uses minimal organic fertilizer applications, relying on legumes 

and animal droppings during grazing as the primary sources of soil fertility.  Nitrogen 

loading from fertilizer applications on all farms is calculated in Task 8.  Phosphorus 

loading from fertilizers is an even smaller concern due to the tendency for soil bonding of 

phosphorus and the relative large distance of most farms in the watershed from water 

resources.   

 

Animal manure is dispersed over the area grazed.  A considerable portion is left in areas 

where the animals loaf or are fed.  Farm animal nutrient production in manure is 
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substantial on an annual basis.  It can be particularly a problem when concentrated in an 

uncovered stack which can generate runoff to a water resource.  Proximity of areas where 

manure accumulates and the frequency of removal to storage or to spreading on fields are 

factors in the relative degree of threat from animal waste.  EPA (1977) has estimated 

annual nutrient production as follows: 

 

 Animal Type  Total Phosphorus  Total Nitrogen  

 Cattle   17.60    57.49 

 Hogs   3.23    9.68 

 Sheep   1.47    10.06 

 Poultry   0.09 to 0.39   0.39 to 0.84 

 

These figures are in kilograms per year per animal. 

 

As it is closest to the pond resource and the farm operators were most helpful in 

discussing their operation, the potential phosphorus loading is discussed for the Allen 

Farm.  The annual phosphorus budget from manure is estimated based on 3 horses, 4 

pigs, 50 chickens and an average annual sheep flock of 125 animals at 240 to 300 

kilograms.  An inspection of the farm fields indicated a substantial buffer of 75 to over 

100 feet along the unnamed stream as it approaches discharge into the Upper Pond.  The 

animals in the eastern pasture bordering the Upper Pond do have access to the Pond for 

drinking water but only limited amounts of droppings were seen.  The slope to the pond 

generally had good grass cover.  Consultation with the Natural Resource Conservation 

Service was suggested to reduce the few areas where runoff potential was observed. 

 

Sources: Groundwater 

Phosphorus tends to be attenuated in all but the very coarsest soils through precipitation 

reactions with aluminum and iron and inorganic adsorption (Bodek, et al, 1988).  If 

steadily supplied, phosphorus can overwhelm these retention mechanisms and over time 

move further out away from the source.  The complexity of the attenuation processes 

makes it very difficult to model the movement of phosphorus without an enormous input 

of information to calibrate the model.  Simpler models that ignore the detailed 

mechanisms of attenuation and reflect the overall behavior of the pollutant have been 

developed (Freundlich and Langmuir models).  The behavior of phosphate may follow 

one type of formula at low concentrations (Freundlich) and a linear formula at high 

concentrations (Shayan and Davey,1978).  In field studies, phosphate has both been 

identified as a pollutant in the ground water and has been found to be an insignificant 

addition.  A review of differing studies follows. 

 

Phosphorus was identified entering Johns Pond in Mashpee from septic leachate (by an 

Endeco Type 2100 Septic Leachate Detector).  The largest volume of wastewater 

discharge was identified along an area of shoreline down gradient from the Otis trailer 

park in excess of 100 feet from the Pond.  The presence of elevated nitrate, ammonium 

and phosphorus in the water column correlated with heavy filamentous algae growth 

(Environmental Management Institute, 1976).  In a similar study on sandy soils with high 
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water tables in Minnesota, Kerfoot (ca. 1980) found  that, with high groundwater flow 

rates (> 10 feet per day), the attenuation of phosphate from nearshore septic systems was 

not high.  As the groundwater flow rate to the Chilmark Pond is estimated at about 1 foot 

per day, this second study offers limited guidance. 

 

Weiskel and Howes (1992) found that phosphate was strongly retained by soils and 

aquifer materials in the Indian Heights study area in the Buzzard's Bay watershed.  The 

watershed was sited on medium to coarse sandy soils similar to those in portions of the 

Pond recharge area.  The housing density was on the order of one dwelling per quarter 

acre and had been constant for about 10 years.  They attributed the high attenuation rate to 

inorganic adsorption and precipitation which was so dramatic that the post development 

increase in phosphate flux through the groundwater was found to be insignificant.   

 

Valiela et al (1990) found that the ratio of nitrogen to phosphorus in sewage effluent 

plumes in groundwater increased by a factor of 3 to 4 in transit from the point of 

discharge in the watershed to the point of discharge at a coastal pond.  The increase noted 

implies a mechanism either removing phosphorus or adding nitrogen.  The data was 

developed from sites where sewage was the dominant source of nutrients. 

 

Gaines (Appendix C IN Wilcox, 1999) sampled the Edgartown Great Pond water column 

in very shallow water around the perimeter of the eastern half of the pond.  Strong nitrate 

and silicate signals were found at the heads of the coves after the pond was breached 

accompanied by lower salinity.  Lower salinity indicated increased ground water 

discharge bringing these nutrients into the system at those points.   No phosphate signal 

was found indicating it is not carried into the pond in substantial amounts by the 

groundwater. 

 

Sewage Phosphate Source: 

One logical way to address these different conclusions is to assume that effluent  

discharged from septic systems within a certain distance of the pond will eventually 

release phosphate into the pond.  This approach was used in the Falmouth zoning bylaw 

where dwellings within 300 feet were considered to be phosphate sources.  From an 

examination of aerial photographs (1998) of the shoreline, the houses found within 300 

feet of the shore are as follows: 

 Chilmark Pond Lower  13 dwellings 

 Chilmark Pond Upper  10 dwellings 

 Squibnocket Pond  4 dwellings 

 Menemsha Pond 

  Stonewall  13 dwellings 

  Nashaquitsa  23 dwellings 

  Main body  17 dwellings 

  Menemsha Village 30 dwellings 

     1 restaurant 

     1 public restroom 
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The average person releases 3.5 pounds of total phosphorus in their waste per year.  The 

EPA National Eutrophication Survey (1978) estimated that 0.25 pounds (7%) of the total 

phosphorus in the discharge could reach a surface water body.   Over time, as the soil is 

saturated with bonded phosphorus a somewhat higher annual percentage might reach the 

water resources.  

 

Using the occupation rates found in Chilmark and Aquinnah as discussed in Tasks 7 and 

8, the total annual phosphorus loading from the dwellings identified within 300 feet of 

shore is as follows: 

  Chilmark Lower 68.25 pounds ( 31 kilos) 

  Chilmark Upper 52.5 pounds  (23.8 kilos) 

  Squibnocket Pond 21 pounds (9.5 kilos) 

  Menemsha Pond 435.8 pounds (197.6 kilos) 

   restaurant  restrooms 210 pounds (94 kilos)  

 

At 7 percent input, the annual loading of phosphorus from septic leachate to Chilmark 

Pond 3.84 kilograms.  Over the course of the sampling rounds in Chilmark Pond the 

average total water column content of orthophosphate was 35 to 40 kilograms.  Wetzel 

(1983) indicates that, in fresh waters, inorganic soluble phosphorus is approximately 5 

percent of the total phosphorus in the water column.   A reasonable estimate of total 

phosphorus in Chilmark Pond is around 700 kilograms.  From this perspective, the annual 

loading from septic system leachate is insignificant. 

 

Data from Squibnocket Pond collected in 1995 indicate average water column 

orthophosphate of 0.7 to 1.2 micromoles per liter.  The total orthophosphate content of 

the water column based on this range is 138 kilograms.  Using the same reasoning as for 

Chilmark Pond, total phosphorus is about 2765 kilograms.  The addition of less than 1 

kilogram per year from nearby dwellings is not a significant factor. 

 

The addition to Menemsha Pond is more substantial amounting to 20 kilograms of total 

phosphorus per year.  Average orthophosphate content of the water column during 1995, 

was 0.4 to 0.5 micromoles per liter.  At mid-tide volume this amounts to 70 kilograms of 

orthophosphate or 1400 kilograms of total phosphorus.  Each tidal prism amounts to 

nearly 50 percent of the pond volume leading to a 95 percent exchange of the pond every 

3.2 days.  Excess phosphorus can be quickly circulated out of the system. 

 

Rainfall Sources: 

Nixon (1995) sited a study in Narragansett Bay which measured the deposition of total 

phosphorus from the atmosphere at 390 micro-moles (12.1 milligrams) per meter square 

per year.  A two year study by the USGS (1995) found that the two year average 

orthophosphate content at the Truro gauge was 2.89 milligrams per square meter ( 93.2 

micro-moles/m2).  The difference may be accounted for by filtration at the Truro site 

through a 0.4 micron filter prior to analyses (therefore it does not include particulate 
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phosphorus).  Assuming these two figures as the range of release of phosphorus from the 

atmosphere into the ponds the total annual addition is: 

 Chilmark Pond  0.7 X 106 square meters   2.0 to 8.5 kilograms 

 Squibnocket Pond  2.43 X 106 square meters 7.0 to 29.4 kilograms 

 Menemsha Pond 3.2 X 106 square meters  9.25 to 38.7 kilograms 

 

Background Orthophosphate Content in the Groundwater: 

Background total phosphorus content on the Vineyard was estimated at 0 to 0.09 

milligrams per liter (Main, 1986).  A survey of private wells found total phosphorus 

ranging from 0 to 0.08 mg/l (Mass. Div. of water Pollution  Control, 1975).  The USGS 

(1995) found background orthophosphate levels at 0.02 mg/l.   

           

With estimated annual discharge from the recharge areas of the ponds, the background 

phosphorus content can become an important source.  If this background level is 0.02 

mg/l then an annual discharge of orthophosphate is: 

  Chilmark Pond 255.7 X 106 cubic feet/year 145 kilograms 

  Squibnocket Pond 105 X 106 cubic feet/year 59.5 kilograms 

  Menemsha Pond 149.6 X 106 cubic feet/year 84.7 kilograms 

 

Sources: Landfill and Sewage Treatment Plant: 

Down gradient wells at the Aquinnah landfill show the impact of landfill leachate on the 

groundwater (Smith & Mahoney, 1991).  However, phosphorus compounds were not 

monitored at any time during the course of the well water quality survey.  Leachate from 

landfill materials can include phosphate.  It is also high in iron and often acidified which 

should provide an ideal situation for forming insoluble phosphorus compounds.  The 

landfill has been capped which should greatly reduce the amount of rainfall that passes 

through landfill waste and reaches the groundwater.  The old contaminants may still be 

traveling toward Squibnocket Pond and should be considered. 

 

Solid waste contains about 0.01 milligrams of phosphate per gram of waste (Fungaroli, 

1971).  A field experiment found phosphate concentrations on the order of 5 milligrams 

per liter or less in leachate generated from solid waste (Fungaroli, 1971).  The annual 

recharge through the 3 acre landfill is estimated at 0.25 million cubic feet.  If the content 

were 5 mg/l, a total annual release into the groundwater of 35.4 kilograms of phosphate 

would result.  High iron concentrations in down gradient observation wells (0.4 to 2.4 

milligrams per liter) imply large numbers of possible bonding sites for phosphorus. 

Therefore, somewhat less would arrive at the pond due to absorption.  If  7 percent of the 

released phosphorus were assumed to reach the pond (as with the septic system leachate), 

the annual addition from the landfill would be less than 10 kilograms. 

 

The sewage treatment plant releases phosphorus in the effluent discharge.  The 

concentration has not been measured during the regular monthly testing.  Secondary 

treatment plants release about 2.3 milligrams per liter (EPA, 1993) while advanced 

treatment reduces total phosphorus to an average of about 0.53 mg/l (EPA, 1993).  The 

organic portion of the total phosphorus is more likely to be filtered out during seepage 
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through the infiltration beds.  Therefore, an appropriate estimate of the amount of 

orthophosphate reaching the groundwater from the plant would be well below 0.5 mg/l. 

If we assume that the plant operates at its design capacity on a year round basis, the 

annual flow is 5.84 million gallons.  If the total phosphorus concentration were 0.5 

milligrams per liter, the annual loading would be 11 kilograms.  This loading would be 

reduced in transit through the groundwater perhaps as much as is assumed for septic 

system leachate bringing the loading to the pond to less than 1 kilogram per year. 

 

Table C-2 summarizes the estimates developed in the preceding sections.  These 

estimates are based on numerous assumptions however, it appears that the annual loading 

of phosphorus from the watershed ranges from 29 percent for Chilmark Pond, to 4 

percent for Squibnocket and 30 percent for Menemsha Pond of the average total 

phosphorus content of the ponds at any one time. 

 

Table C-2    Annual Phosphorus Loading Estimate from Land Based Sources: 

     Chilmark Pond Menemsha     Squibnocket 

RUNOFF         3      2     2 

NEARBY SEPTIC SYSTEMS    55  292   10 

RAINFALL         9     39   29 

GROUNDWATER BACKGROUND   145    85   60        

TREATMENT PLANT PLUME      0      0     1 

LANDFILL PLUME        0      0   10 

TOTAL               212  418   112 

 

 

 Natural Sources: 

Nixon (1981) concluded that benthic remineralization released nitrogen and phosphorus 

from bottom sediments with a low proportional ratio of about 3 to 4.  His conclusion was 

that reworking of organic matter brought nitrogen into anaerobic zones where 

denitrification released nitrogen gas to the air and therefore preferentially released 

phosphorus into the water column.  He estimated that 62 percent of the orthophosphate  

required to meet estimated primary production was recycled internally in the pond 

system.  The benthic release ranged from 2 to 50 micromoles per meter square per hour.  

When a rate of 2 micromoles per meter square per hour is applied to these ponds, on an 

annual basis this would release 380 kilograms (Chilmark Pond), 1320 kilograms 

(Squibnocket Pond) and 1740 kilograms (Menemsha Pond).   At 50 micromoles per hour 

the annual release increases to 9,500 to 43,500 kilograms per year.  Whether these figures 

apply rigorously to these ponds or not, they probably provide a good indication of the 

order of magnitude of this source.   

 

Tidal exchange in Menemsha Pond with the ocean has been estimated at 166 million 

cubic feet per day (Task 6).  Offshore waters contain about 0.45 micromoles per liter of 

orthophosphate (Wilcox, 1999).  On an annual basis, some 24,000 kilograms of 

orthophosphate enters the pond with the flood tides. 
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These two sources exceed 25,000 kilograms per year at the low end and 75,000 kilograms 

per year on the high end.  It seems clear that land derived sources are relatively 

insignificant to Menemsha Pond when compared to ocean and in-pond sources. 

 

In the Chilmark Pond and Squibnocket Pond systems, tidal action is a very small factor 

under present day conditions.  On the low end, remineralization is about double the 

estimated man made loading to Chilmark Pond.  At the high end, man made sources are 

only 2 percent of sediment release sources.  For Squibnocket Pond, the man made sources 

range from less than 10 percent down to less than ½ percent. 

 

Runoff sources including street and agricultural lands will vary from year to year 

depending on the size, frequency and duration of the storm.  These sources may be 

substantial short term sources but they are a small percentage of the annual phosphorus 

budget within the ponds.  Even so, steps should be taken to provide filtration of these two 

sources through vegetated buffers.   

 

Recommendations: 

 Request Natural Resource Conservation Service to make priority visits to 

farms that border streams and coastal ponds to assess need for buffer strips, 

need to divert runoff from areas of manure storage or concentration and to 

identify alternatives to direct access to water resources for watering stock. 

 Request Natural Resource Conservation Service to inspect road runoff 

potential at stream crossings with an eye toward diverting runoff into 

vegetated areas.  Sites that are identified may qualify for funding under the 

Coastal Pollution Remediation program. 

 Encourage home owners to provide buffers between their turf and abutting 

coastal waters. 

 Attempt to set back septic system leaching areas as far from the pond shores 

as can reasonably be accomplished within the confines of the lot and 

placement of the water supply well.  The suggested goal for the separation of 

septic leach area from water resources is 300 feet.  The Squibnocket Pond 

District in Chilmark with the required 500 foot set back should eliminate 

phosphorus additions from septic systems.   
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GLOSSARY OF TERMS 
 

 

Alga   A type of phytoplankton.  Plural is algae. 

 

Anadromous  Type of fishes which spend most of their lives at sea but 

   migrate to fresh water for breeding (e.g. shad, salmon & herring). 

 

Bathymetry  The depth of a water body and information relating to it. 

 

Biomass  The weight of all living matter in a particular area at a particular  

   time. 

 

Blooms  Dense concentration of phytoplankton which develops under  

   optimum growth conditions.  The term algal bloom or algae bloom 

   refers to overgrowth of algae due to excess nutrient input.  Usually 

   not a desirable condition due to depletion of dissolved oxygen. 

 

Chlorophyll  The green pigment which allows plants to use solar energy to 

   convert carbon dioxide and water into plant matter.  The major  

   pigment type is chlorophyll a which can be measured as an  

   indicator of water column biomass. 

 

Cubic Foot  A volume of water equal to 7.48 gallons, 28.32 liters or 0.03 cubic 

   meters. 

 

Detritus  Debris from formerly living organisms including dying plants and  

   animals, broken and damaged plant fragments from feeding or  

wave action and the waste products from animals living in the 

pond. 

 

Dissolved oxygen Also DO.  Oxygen dissolved in water is essential for plants and  

   animals in an estuary.  The quantity dissolved is an indicator of 

   water quality. 

 

Diurnal  Referring to an event that occurs within a 24 hour period.  For  

   example a diurnal tide is one tidal cycle in a 24 hour period. 

 

Estuary  A water body that forms the transition between fresh water and sea  

   water. 

 

Eutrophication The condition of a water body when supplied with excess  

   nutrients.  
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Flushing Time The time required for a particular water input to a pond (e.g. tide  

   volume or groundwater seepage) to equal the volume of the pond. 

Limiting nutrient The nutrient which is lacking in sufficient quantities when  

   compared to other necessary nutrients for an increase in  

   phytoplankton productivity to occur.  Used most often in reference  

   to nitrogen phosphorus and silica. 

 

Macrophyte  The larger forms of aquatic vegetation including rooted 

   forms such as eelgrass, attached forms such as codium and  

   sea lettuce and very few free floating forms like Sargassum. 

Meter   Metric measure of length equal to 3.28 feet. 

Microgram  A mass equal to one millionth of a gram. 

Milligram  A mass equal to 0.001 gram or 2 millionths of a pound. 

 

Microgram per Liter A concentration of one microgram in a liter of water equal to one  

   part per billion.  ug/l 

 

Micromole per Liter A concentration of one millionth of a mole per liter of water. 

   The equivalent in mg/l varies with the atomic weight. um/l 

 

Milligram per Liter A concentration of one milligram in a liter of water equal to one  

   part per million. mg/l 

 

Moraine  A glacial deposit put in place by active ice action and characterized  

   by a diverse mix of particles from clay through boulders. 

 

NTU   Nephelometric Turbidity Unit—A measure of light transmission  

   somewhat more precise than the Secchi depth. 

 

Nitrogen  One of the major nutrients necessary for growth of phytoplankton. 

   While abundant in the air, it is not very soluble in water and is  

   brought into coastal ponds by streams, groundwater and acid rain  

   from both natural and man-made sources. 

Nitrogen fixation A process where nitrogen is converted from gas in the air to  

   organic and inorganic compounds.  This process is only  

   performed by a limited number of organisms such as blue- 

   green algae and nitrogen fixing bacteria. 

 

Nutrient loading The amount of nitrogen or phosphorus added to a water body from  

   the air, groundwater and streams.  In excess, nutrient loading will 

   lead to algae blooms, loss of eelgrass and low dissolved oxygen. 

 

Nutrients  The elements required for life to exist and reproduce.  The major  

   nutrients required are nitrogen, phosphorus, oxygen, hydrogen,  

   silica and carbon. 
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Outwash  A glacial meltwater deposit characterized by sand and gravel  

   deposits. 

 

Parts per Thousand A concentration equal to one part of a substance in one thousand  

   parts of water.  Equal to 1000 parts per million.  PPT 

Phytoplankton Specifically the floating, single celled, photosynthetic plant life in  

   natural waters also referred to as algae. They are at the base 

of the food chain. 

Productivity  A measurement of the amount of biological activity leading to 

   the conversion of  light energy, carbon dioxide and water into 

   carbohydrates.  Often measured by the rate of oxygen production,  

   the rate of carbon dioxide uptake or the rate of increase of  

   particulate matter. 

 

Recharge  The process where rain water filters through the soil to the  

   groundwater. 

Recharge Area The area where recharging rain water will flow in the groundwater 

   to a coastal pond.  Similar to watershed. 

 

Residence Time The average age of a water particle in an estuary.  Therefore, it is  

   the average time required for tidal exchange to remove recently 

   introduced nutrients entering with groundwater.  The longer the  

   residence time, the more productivity that can be stimulated by 

   nutrients before they exit the system. 

Salinity  A measure of the amount of dissolved salts found in the water  

   column, including sodium, calcium, magnesium, and potassium  

   chlorides, sulfates bromides and other compounds.  Full strength  

   sea water has a salinity of 35 parts per thousand (PPT).  Fresh 

   water has a salinity of 0 PPT.  Our coastal salt ponds vary from 

   28 to 34 PPT in the tidal ponds to 10 to 20 PPT in the Great ponds. 

 

Secchi depth  The depth to which a white disk, 1 foot in diameter can be seen in 

   the water column. 

 

Semidiurnal  Referring to a process which occurs twice each day.  A semidiurnal  

   tide has two high tides and two low tides each day. 

 

Tidal prism  The total volume of water exchanged between an estuary and the  

   ocean during the course of a tidal cycle. 

 

Watershed  The upland area that drains into a water body directly or into  

   streams which flow to the waterbody.   Where there is sufficient  

   information on groundwater flow, the watershed may be drawn to  

   include the area where recharging water moves into the pond.   

   Otherwise, it is based on the surface topography. 
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ABSTRACT 

Chilmark, Menemsha and Squibnocket Ponds: 

Nutrient Loading & Recommended Management Program 

Prepared by the Martha’s Vineyard Commission 

Prepared for the Department of Environmental Protection Under Grant #98-04-604 

January 2001 

 
The physiological parameters of these three coastal ponds situated on Martha’s Vineyard island, 

Massachusetts were determined including: size and volume of the basins, area within the 

watersheds and tide range and residence time.  Bathymetry and basin volume of Chilmark Pond 

was developed from field data while that for Squibnocket and Menemsha Ponds was based on 

existing data.  Current water quality of Chilmark Pond was assessed in the field and based on 

previous study for Menemsha and Squibnocket Ponds.  Nutrient loading estimates were prepared 

for each watershed based on current land use as indicated in Assessor’s Office records.  Nitrogen 

loading limits were determined based on residence time and desired water resource quality goals.   

 

Due to its short residence time of 3.2 days, Menemsha Pond is not expected to exceed the 

appropriate nitrogen loading limit for highest quality coastal waters even under the highest 

projected loading rates.  Squibnocket Pond will exceed the nitrogen loading limit for reduced 

quality coastal waters under the highest growth scenario but projected loading may be reduced by 

watershed nutrient management to an acceptable level through minor adjustment in land use 

controls.  Chilmark Pond will exceed the appropriate nitrogen loading limit for reduced quality 

coastal waters under all projected growth scenarios and necessary land use controls to lower 

loading are more restrictive. 

 

Five rounds of water samples were collected from Chilmark Pond and analyzed for nitrogen 

species, chlorophyll a, orthophosphate and particulate nutrient content.  Simultaneously, field 

data was collected to assess dissolved oxygen, water column visibility and conductivity.   This 

data indicates that the Lower (eastern) Chilmark Pond is a brackish pond which has limited tidal 

exchange during the lifetime of the inlets cut through the barrier beach.  Nitrogen enters the 

Lower Pond from the groundwater and from the Upper Pond which has a much larger watershed 

and streams draining it.  Water quality within the Lower Pond is within the moderate to low 

quality ratings as characterized by two sets of screening standards. 

 

In addition, two rounds of water samples were collected from the streams that drain to Chilmark 

Pond and from within the pond itself and analyzed for fecal coliform bacteria.  This data 

indicates that the streams draining into the Pond and runoff from immediately adjacent uplands 

and roads are sources of bacterial contamination. 

 

Recommendations are made to gather additional field data in all three ponds.  Recommendations 

for nitrogen removing sewage disposal technology, road and farm runoff control, acquisition of 

open space and in-pond nutrient removal are made for Chilmark and Squibnocket Ponds.  The 

residence time for Squibnocket Pond may be easily reduced through improved tidal flow in 

Herring Creek which will eliminate the need for more restrictive land use controls.  Options to 

improve tidal flushing in Chilmark Pond to raise the nitrogen loading limit and ease the 

restrictive development controls are explored. 


